Kwanten Polytechnic University CHEM 1105

SAMPLE FINAL EXAM 1

Time allowed: 3 hours

1. For the following provide the correct name or formula. [8]
a) $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$
b) $\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
d) $\mathrm{Ca}(\mathrm{OH})_{2}$
f) Perchloric acid
g) Dihydrogen sulfide
i) Barium phosphate
j) Copper(II) sulfate pentahydrate
2. Complete and balance the following reactions. Give states of products. In each case there is a reaction. Compounds of group I A and ammonium ion are soluble. All nitrates are soluble. [6]
a) $\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow$
b) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow$
c) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad+\mathrm{KOH}(\mathrm{aq}) \quad \rightarrow$
3. Give the net-ionic equations for part (b) of question \# 2. [1]
4. Complete the following table. [5]

Isotopic Notation	Number of protons	Number of neutrons	Number of electrons	Net Charge
${ }^{197 \mathrm{Au}^{3+}}$				
	33	42		+3
	16	16	18	
	81	123		+1

5. The element europium exists in nature as two isotopes. Eu-151 has a mass of 150.9196 amu , and Eu-153 has a mass of 152.9209 amu . The weighted average atomic mass of europium is 151.96 amu . Calculate the relative percent abundance of the two isotopes. [2]
6. A compound used in the manufacture of Saran is $24.7 \% \mathrm{C}, 2.10 \% \mathrm{H}$, and $73.2 \% \mathrm{Cl}$ by mass. The storage of 3.557 g of the compound in a 750.0 mL vessel at $0^{\circ} \mathrm{C}$ results in a pressure of 1.10 atm . Calculate the empirical (simplest) and molecular formula of the compound. [6]
7. Iron pyrite, FeS_{2}, reacts with O_{2} according to the following reaction:

$$
4 \mathrm{FeS}_{2}(\mathrm{~s})+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+8 \mathrm{SO}_{2}(\mathrm{~g})
$$

a) Calculate the mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ that is produced from the reaction of 75.0 L of $\mathrm{O}_{2}(\mathrm{~g})$ at 2.33 atm and $150.0^{\circ} \mathrm{C}$ with an excess of FeS_{2}. [4]
b) If the $\mathrm{SO}_{2}(\mathrm{~g})$ that is generated in (a) is dissolved to form 5.00 L of an aqueous solution, what is the molar concentration of resulting sulfurous acid, $\mathrm{H}_{2} \mathrm{SO}_{3}$, solution? [2]
8. A mixture of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, and hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, can be used as a rocket propellant. The reaction is:

$$
7 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a) How many moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ react with $0.477 \mathrm{~mol}_{2} \mathrm{H}_{4}$? [1] \qquad
b) How many grams of HNO_{3} can be produced in a reaction of 67.7 g $\mathrm{H}_{2} \mathrm{O}_{2}$ with excess $\mathrm{N}_{2} \mathrm{H}_{4}$? [3]
c) How many grams of HNO_{3} can be produced in a reaction of 67.7 g $\mathrm{H}_{2} \mathrm{O}_{2}$ with 10.00 mL of $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~d}=1.006 \mathrm{~g} / \mathrm{mL})$ if the yield of the reaction is 76.5% ? [4]
9. A 10.0 mL sample of $3.00 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$ is transferred to a 250.0 ml volumetric flask and diluted to the mark. It was found that 38.5 ml of this diluted solution was needed to react the stoichimetric point in a titration of 10.0 mL of a phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, solution. The reaction is:

$$
3 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a) Calculate the molarity of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in the original solution. [3]
b) Calculate the percent, by mass, of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in the original solution. Assume the density of the acid is $1.00 \mathrm{~g} / \mathrm{mL}$. [2]
10. The standard enthalpy of formation of alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$, is -278 $\mathrm{kJ} / \mathrm{mol}$. Give the thermochemical equation corresponding to the enthalpy of formation of alcohol. [2]
11. Calculate the $\Delta \mathrm{H}^{\circ}$ for the reaction

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})
$$

from the following reactions ($\Delta \mathrm{H}^{\circ}$ are given in kJ): [4]

$$
\begin{array}{ll}
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g}) & - \\
\mathrm{HCl}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{aq}) & -74.8 \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g}) & -184.6 \\
\mathrm{AlCl}_{3}(\mathrm{~s}) \rightarrow \mathrm{AlCl}_{3}(\mathrm{aq}) & -323
\end{array}
$$

$$
-1049
$$

12. 50.0 mL of $0.100 \mathrm{M} \mathrm{AgNO}_{3}$ were mixed with 50.0 mL 0.100 M HCl . The two solutions were initially at $22.60^{\circ} \mathrm{C}$. The final temperature of the reaction mixture was $23.40^{\circ} \mathrm{C}$. Assuming that the density of each solution is $1.00 \mathrm{~g} / \mathrm{mL}$ and that specific heat is $4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ for the following reaction. [4]

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{HNO}_{3}(\mathrm{aq})
$$

13. Give the oxidation number for the underlined atom. [2]
a) $\mathrm{SO}_{3}{ }^{2-}$
b) $\mathrm{Mg}_{2} \underline{\mathrm{P}}_{2} \mathrm{O}_{7}$
c) NF_{3}
d) $\mathrm{UO}_{2}{ }^{2+}$
14. a) Balance the following redox reaction that occurs in an acidic solution. [4]

$$
\mathrm{As}_{2} \mathrm{O}_{3}(\mathrm{aq})+\mathrm{NO}_{3}-(\mathrm{aq}) \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g})
$$

b) Give the oxidizing agent. [1]
15. Write the equilibrium constant expression for the reactions. [2]
a) $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$\mathrm{K}=$
b) $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \Leftrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}=$
16. From the expression for K_{c} given below, write the appropriate equilibrium equation. [2]

$$
\mathrm{K}_{\mathrm{c}}=-------------
$$

17. 2.40 moles of HBr are placed in a 2.00 L vessel at 500 K and the equilibrium is established. Calculate the concentrations of all the participants. [4]

$$
2 \mathrm{HBr}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=7.7 \times 10^{-11} \text { at } 500 \mathrm{~K}
$$

18. The following equilibrium is exothermic. [4]

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

State the effect (for increase circle I, for decrease circle d, and circle nc for no change) that the change has on the original equilibrium value of the quantity in the second column.

Add NO	Amount of $\mathrm{H}_{2} \mathrm{O}$	I	d	nc
Add NO	Amount of O_{2}			
Remove $\mathrm{H}_{2} \mathrm{O}$	Amount of NO			
Add NH_{3}	Value of K_{c}			
Add NH_{3}	Amount of O_{2}			
Remove NO	Amount of NH_{3}			
Decrease volume of the container	Amount of NH_{3}			
Increase the temperature	Value of K_{c}			

19. Write the correct formula for the conjugate partner of the acid or the base. [2]

Acid	base
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	
OH^{-}	
	$\mathrm{CH}_{3} \mathrm{NH}_{2}$
	$\mathrm{SO}_{4}{ }^{2-}$

20. The value of K_{w} for water at $37^{\circ} \mathrm{C}$ is 2.5×10^{-14}. Calculate the pH of water and tell if water is acidic, basic, or neutral at this temperature. [2]
21. Calculate the $\mathrm{pH}, \mathrm{pOH}$, and $\%$ ionization of a $0.100 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$. [4]

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}
$$

22. The pH of a 0.100 M chlorous acid, HClO_{2}, (aq) was found to be 1.2. Calculate K_{a} of chlorous acid. [3]
23. A 10.00 g sample of potassium acetate, $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, is dissolved to make 250.0 mL of a solution. Calculate the pH of the solution. $\mathrm{K}_{\mathrm{a}}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)=$ 1.8×10^{-5} [4]
24. Calculate the pH for the following situations. [4]
a) 40.0 mL of $0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is mixed with 20.0 mL of 0.100 M NaOH .
b) 40.0 mL of $0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is mixed with 20.0 mL of 0.200 M NaOH . [4]
25. A 10.0 g sample of p -dichlorobenzene, a component of mothballs, is dissolved in 80.0 g of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$. The freezing-point of the solution is $1.20^{\circ} \mathrm{C}$. The freezing point of benzene is $5.48^{\circ} \mathrm{C}$. The molal freezing -point constant, k_{f}, for benzene is $5.12^{\circ} \mathrm{C} / \mathrm{m}$. Calculate the apparent molar mass of p-dichlorobenzene. [4]
