INTRODUCTION TO THE CHEMISTRY LAB

USE OF THE BALANCE \& PIPET

Objective: To learn to use the triple beam and analytical balances; to practice the techniques of "weighing in" and "weighing out" by difference and pipetting.

Procedure: As in the Chemistry 1110 Lab Manual, pages 34 - 36

ObSERVATIONS:

DATA:

Part I:

"Weighing in" by difference

	Analytical Balance, g	Triple Beam Balance, g
Mass of empty 50 mL beaker		
Mass of beaker and glass beads		
Mass of glass beads		

"Weighing out" by difference

	Analytical Balance, g	Triple Beam Balance, g
Mass of vial and glass beads		
Mass of empty vial		
Mass of glass beads		

Weighing by "Taring"

Mass of beads in the beaker by weighing IN =
Mass of beads by Weighing OUT =

Sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ weighing exercise

Mass of full vial, g	
Mass of "1/3 empty" vial, g	
Mass of "2/3 empty" vial, g	
Mass of "empty" vial, g	

	Flask \#1	Flask \#2	Flask \#3
Mass of NaHCO_{3} in each flask, g			

PART II:

Pipetting Exercise:

Mass of empty 50 mL stoppered Erlenmeyer flask = \qquad g

Pipetted Volume (mL)	Mass (g) of flask + pipetted water	Mass (g) of $\mathbf{1 5 . 0 0} \mathbf{~ m L}$ pipetted water	Absolute value of deviation of each mass of water from the average mass (g)
15.00			
30.00			Average Deviation 45.00
		Average Mass $=$	

Calculation of Average Volume \& Deviation delivered by 15.00 mL pipette:

(Use density of water at a given temperature in the lab manual in the introduction lab, to calculate the average volume and average deviation in terms of volume from the mass terms)

Volume delivered by 15.00 mL pipette:

Average volume (mL) \qquad \pm Average deviation(mL) \qquad
(Remember, average deviation should be based on the number of decimals present in the average volume)

