ANSWERS TO ATOMIC STRUCTURE PROBLEM SET

1. (a) $v=c / \lambda=\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) / 500 \times 10^{-9} \mathrm{~m}=6.0 \times 10^{14} \mathrm{~s}^{-1}$
(b) $\mathrm{E}=\mathrm{h} v=\left(6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)\left(6.0 \times 10^{14} \mathrm{~s}^{-1}\right)=3.97 \times 10^{-19} \mathrm{~J} /$ photon
(c) $\mathrm{E}(\mathrm{kJ} / \mathrm{mol})=\left(3.97 \times 10^{-19}\right)\left(6.02 \times 10^{23}\right)(1 \mathrm{~kJ} / 1000 \mathrm{~J})=239 \mathrm{~kJ} / \mathrm{mol}$
2. Wavelength of a photon necessary to produce a photoelectron from this metal is $\lambda=\mathrm{hc} / \mathrm{E}=\left(6.62 \times 10^{-34}\right)\left(3 \times 10^{8}\right) /\left(6.70 \times 10^{-19}\right)=2.96 \times 10^{-7} \mathrm{~m}=296 \mathrm{~nm}$

Therefore the device will not work on this planet because the photons of this wavelength will be absorbed by the atmosphere on this planet.
3.

$$
\begin{aligned}
& \Delta \mathrm{E}=\left(6.62 \times 10^{-34}\right)\left(1.141 \times 10^{14}\right)=7.553 \times 10^{-20} \mathrm{~J} \\
& \Delta \mathrm{E}=-2.178 \times 10^{-18}\left[1 / \mathrm{n}^{2}-1 / 4^{2}\right]=7.553 \times 10^{-20}
\end{aligned}
$$

Solving for n yields $\mathrm{n}=6$
4. To calculate the ionization potential of a one-electron system we take the electron from its ground state $(n=1)$ and remove it to its $n=\infty$ orbit. For $C^{5+}(Z=6)$ and therefore
$\Delta \mathrm{E}=\mathrm{E}_{\infty}-\mathrm{E}_{1}=-2.178 \times 10^{-18}\left(6^{2}\right)\left[1 / \infty^{2}-1 / 1^{2}\right]=+7.841 \times 10^{-17}$ Joule Therefore the ionization potential of C^{5+} in $\mathrm{kJ} / \mathrm{mol}$ is simply

$$
7.844 \times 10^{-17} \times 6.02 \times 10^{23} / 1000=4.72 \times 10^{4} \mathrm{~kJ} / \mathrm{mol}
$$

5. For the H -atom $\Delta \mathrm{E}=-2.178 \times 10^{-18}\left[1 / 2^{2}-1 / 1^{2}\right]$

For the C^{5+} ion $\Delta \mathrm{E}=-2.178 \times 10^{-18}\left(6^{2}\right)\left[1 / \mathrm{n}_{\mathrm{o}}{ }^{2}-1 / \mathrm{n}_{\mathrm{i}}{ }^{2}\right]$
$\Delta \mathrm{E}$ must be the same for both species since the transition for both species gives rise to a spectral line at 121.6 nm . Therefore

$$
\begin{aligned}
& -2.178 \times 10^{-18}\left[1 / 2^{2}-1 / 1^{2}\right]=-2.178 \times 10^{-18}\left(6^{2}\right)\left[1 / \mathrm{n}_{\mathrm{o}}{ }^{2}-1 / \mathrm{n}_{\mathrm{i}}{ }^{2}\right] \\
& 1 / 4-1 / 1=6^{2}\left[1 / \mathrm{n}_{\mathrm{o}}^{2}-1 / \mathrm{n}_{\mathrm{i}}{ }^{2}\right] \\
& 1 / 144-1 / 36=\left[1 / \mathrm{n}_{\mathrm{o}}{ }^{2}-1 / \mathrm{n}_{\mathrm{i}}{ }^{2}\right] \\
& \text { Therefore } \mathrm{n}_{\mathrm{o}}=\sqrt{ } 144=12 \text { and } \mathrm{n}_{\mathrm{i}}=\sqrt{ } 36=6
\end{aligned}
$$

6. (a) 32 electrons
(b) 25 electrons
(c) 10 electrons
(d) 2 electrons
(e) 0 electrons
