ANSWERS TO NUCLEAR CHEMISTRY PROBLEM SET

2. (a) $\alpha \equiv {}^{4}\text{He}$

- (b) ²³⁴U
- (c) ¹¹B
- (d) ⁹⁰Sr
- (e) ^{15}N
- (f) ²¹⁴Pb
- (g) β^+
- (a) mass defect = 0.2003 amu
 (b) 186.5 MeV/atom; 2.988 x 10⁻¹¹ J/atom; 1.80 x 10¹³ Joule/mole
- 4. (a) The ratio of n/p for ¹³²Sn is <u>too high</u> since all stable isotopes have A less than 124. Therefore, β decay (loss of β^- particles)mis the only possible mode of decay. ¹³²Sn ----> ¹³²Sb + β^-
 - (b) Since the atomic mass of U is 238, the ²²⁶U isotope has a n/p ratio which is <u>too low</u>. Since A > 209 and Z >82, the decay mode must be α emission.

 $^{226}U ----> ^{222}Th + \alpha$

- (c) ²⁶Si probably undergoes β^+ emission since it is neutron deficient (all stable isotopes have A >26). ²⁶Si ----> ²⁶Al + β^+
- (d) Since atomic mass of N is 14, the ¹⁹N isotope is neutron rich (i.e. n/p ratio is too high) and therefore it has to undergo β emission.

 $^{19}N - - - > ^{19}O + \beta^{-}$

- 5. (a) ⁷Li + ¹H ----> 2 ⁴He (b) 17.3 MeV/atom of Li-7
- 6. (a) ${}^{14}N + {}^{4}He ----> {}^{17}O + {}^{1}H$ (b) 1.20 MeV per atom ${}^{14}N$ is needed.
- 7. (a) 7.47 MeV/nucleon
 (b) 7.98 MeV/nucleon
 (c) 7.57 MeV/nucleon
 Oxygen-16 is the most stable isotope since it has the highest binding energy per nucleon.
- 8. 0.408 hr⁻¹

- 1.6×10^3 years 9.
- (a) 50%
 (b) 25%
 (c) 12.5%
 (d) 6.25%
 (e) 3.125% 10.
- $1.15 \text{ x } 10^4 \text{ years}$ 11.