STOICHIOMETRY PROBLEM SET

1. Calculate the number of grams of SF_{4} that can be made from 4.00 g of SCl_{2} and 2.00 g of NaF by the following reaction:

$$
3 \mathrm{SCl}_{2}+4 \mathrm{NaF} \rightarrow \mathrm{SF}_{4}+\mathrm{S}_{2} \mathrm{Cl}_{2}+4 \mathrm{NaCl}
$$

2. Calculate the theoretical yield (in grams) of $\mathrm{B}_{2} \mathrm{H}_{6}$ from the reaction of 25.0 g of $85.0 \% \mathrm{NaBH}_{4}$ with 54.0 g of BF_{3}. The reaction is:

$$
3 \mathrm{NaBH}_{4}+4 \mathrm{BF}_{3} \rightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{6}+3 \mathrm{NaBF}_{4}
$$

3. Calculate the percent purity of a sample of KO_{2} if 3.30 g of the sample gave 655 mL of O_{2} at STP by the reaction below. The volume of 1 mole of a gas at STP is 22.4 L .

$$
4 \mathrm{KO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)+4 \mathrm{CO}_{2}(g) \rightarrow 4 \mathrm{KHCO}_{3}(s)+3 \mathrm{O}_{2}(g)
$$

4. When 1.00 mg of a mixture of cocaine, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}$, and table sugar (sucrose), $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, is burned, 1.75 mg of CO_{2} are produced. Calculate the percent (by mass) of cocaine in the sample.
5. "Proof" of liquour is approximately twice the percent by volume of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. Calculate the molarity of 86 proof scotch. The density of pure ethanol is $0.79 \mathrm{~g} / \mathrm{mL}$.
6. A sample of hydrated sodium sulfite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}\right)$ of mass 0.4322 g was dissolved in water and oxidized to sodium sulfate byadding exactly 0.8000 g of I_{2} (present in excess) according to the net ionic equation shown below:

$$
\mathrm{I}_{2}(a q)+\mathrm{SO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{I}^{-}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q)+2 \mathrm{H}^{+}(a q)
$$

The resulting acidic solution was then exactly neutralized by the addition of 40.00 mL of 0.100 M NaOH . Determine the value of X in $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$.
7. A 10.0 g sample of a $\mathrm{Cu} / \mathrm{Ag}$ alloy reacted with concentrated HNO_{3} according to the following equations:

$$
\begin{aligned}
& \mathrm{Cu}(s)+4 \mathrm{H}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{NO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \\
& \mathrm{Ag}(s)+2 \mathrm{H}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{Ag}^{+}(a q)+\mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

A total of 10.00 g of NO_{2} was isolated. Assuming a 100% yield of NO_{2}, determine the percent by mass of Ag in the alloy.

