ELECTRONIC CONFIGURATION PROBLEM SET

- 1. Give the values for all four quantum numbers for each electron in the ground state of the aluminum atom.
- 2. Give the orbital diagram and the electronic notation for an atom of iron.
- 3. Identify the atoms that have the following *ground-state* electronic configurations in their **outer** shell(s).

(a)
$$3s^2 3p^6 3d^3 4s^2$$
 (b) $4s^2 4p^3$ (c) $5s^2 5p^6$
(d) $4s^2 4p^6 4d^{10} 4f^3 5s^2 5p^6 6s^2$ (e) $4s^2 4p^6 5s^2$

- 4. Write the electronic notations for the ground-state configurations of the following atoms.
 - (a) Cd (b) Sn (c) Cu (d) Kr
- 5. State the number of unpaired electrons in each of the atoms in question 4.
- 6. Write the electronic notations for the ground-state configurations of the following ions.
 - (a) Ca^{2+} (b) Mn^{2+} (c) Cl^{-} (d) Fe^{3+}
- 7. Which of the ions in question 6 would you predict to be **diamagnetic** and which **paramagnetic**?
- 8. What would you predict to be the atomic number of the noble gas of the **seventh** period (as yet unknown)?
- 9. Classify each of the following elements as a **noble gas**, a **representative element**, a **transition element**, or an **inner transition element**.
 - (a) Ca (b) Co (c) Cl (d) Ce (e) Xe
- 10. Which of these represent the electronic configuration of an excited atom?
 - (a) $1s^22s^22p^6$ (b) $1s^22s^13s^1$ (c) $1s^22s^22p^23s^1$ (d) $1s^22s^14d^1$
- 11. Given the following sets of electron quantum numbers, indicate those which could not occur and explain your answer.

(a) $2,2,1,+\frac{1}{2}$ (b) $3,3,2,+\frac{1}{2}$ (c) $4,0,2,+\frac{1}{2}$ (d) $3,2,0,-\frac{1}{2}$ (e) 1,0,0,1

12. Which of the following represent atoms in ground states, excited states, or are impossible?

(a) $1s^22s^2$ (b) $1s^22s^23s^1$ (c) [Ne] $3s^23p^84s^1$ (d) [He] $2s^22p^62d^2$ (e) [Ar] $4s^23d^3$ (f) [Ne] $3s^23p^54s^1$