CHEM 1110 KWANTLEN UNIVERSITY COLLEGE

NUCLEAR CHEMISTRY PROBLEM SET

- 1. Write the equations for the following nuclear processes:
 - (a) ²²⁸Th undergoing α decay
 - (b) ¹¹⁰In undergoing positron emission
 - (c) 110 In undergoing EC
 - (d) $^{127}I(p,7n)X$ and identify X
 - (e) ${}^{10}B(\mathbf{X},p){}^{10}Be$ and identify **X**
 - (f) $\mathbf{X}(\mathbf{n},\alpha)^{\overline{7}}$ Li and idenitfy \mathbf{X}
 - (g) $^{95}Mo(p, X)^{95}Tc$ and identify X
- 2. Complete the following natural radiactive decay reactions:
 - (a) ${}^{222}\text{Rn} \rightarrow {}^{218}\text{Po} + ?$ (b) ${}^{234}\text{Pa} \rightarrow \beta^{-} + ?$ (c) ${}^{11}\text{C} \rightarrow \beta^{+} + ?$ (d) $? \rightarrow {}^{90}\text{Y} + \beta^{-}$ (e) ${}^{15}\text{O} \rightarrow \beta^{+} + ?$ (f) ${}^{218}\text{Po} \rightarrow \alpha + ?$ (g) ${}^{23}\text{Mg} \rightarrow {}^{23}\text{Na} + ?$
- 3. (a) Calculate the mass defect of ²³Na if the measured mass is 22.9898 amu?
 NOTE: Use the following masses for these calculations and all other calculations needing these masses.

 $m_{proton} = 1.007277 \text{ amu}$ $m_{neutron} = 1.008665 \text{ amu}$ $m_{electron} = 0.0005486 \text{ amu}$

- (b) What is the nuclear binding energy in joules per atom, Mev per atom and joules per mole of Na-23?
- 4. Each of the following nuclides is radioactive. Predict the mode of decay and write the balanced nuclear equation for the first decay step in each case:
 - (a) 132 Sn (all isotopes of tin with A > 124 are unstable) (b) 226 U (c) 26 Si (the stable isotopes of Si have mass numbers of 28,29, and 30) (d) 19 N
- 5. The reaction for the first fusion bomb was $^{7}\text{Li}(p,\alpha)$.
 - (a) Write the complete reaction for the process and identify the other product.
 - (b) The atomic masses are 1.007825 amu for ¹H, 4.00260 amu for ⁴He and 7.01600 amu for ⁷Li. Calculate the energy for the reaction of one atom of Li in Mev.

- 6. Rutheford's first nuclear transformation can be represented by the shorthand notation ${}^{14}N(\alpha,p){}^{17}O$.
 - (a) Write the corresponding nuclear equation for this process.
 - (b) The respective atomic masses are 14.00307 amu for ¹⁴N, 4.00260 amu for ⁴He, 1.007825 amu for ¹H, and 16.99913 amu for ¹⁷O. Calculate the energy required (in Mev)for this reaction to occur.
- 7. Calculate the binding energy per nucleon for the following isotopes:
 - (a) 15 O with an atomic mass of 15.00300 amu
 - (b) 16 O with an atomic mass of 15.99491 amu
 - (c) 19 O with an atomic mass of 19.0035 amu

Which of these would you expect to be the most stable?

- 8. What is the decay constant (k) for iridium-186 if the radiation emission drops to 25% of its original value after 3.4 hours?
- 9. What is the half-life of radium-226 if the radiation emission rate drops to 95% of its original value after 118.4 years?
- 10. What fraction of the original radiactive material remains after:

(a) $t_{1/2}$ (b) $2t_{1/2}$ (c) $3t_{1/2}$ (d) $4t_{1/2}$ (e) $5t_{1/2}$

11. A freshly picked leaf with 20g of total carbon gives off 20,000 counts per hour due to its carbon-14 content. What is the age of an ancient wood sample that has 10 g of total carbon and emits 2500 counts per hour? Half-life of C-14 is 5730 years.