Chemistry 1210 Quantitative Determination of a Two-Component System

Date:	Name:	
OBJECT:	The objective of this experiment is to quantitatively determine the composition of a two-component system using spectrophotometric methods.	
PROCEDURE:	As in the Chemistry 1210 lab manual, pageplus additional procedure as noted below.	

OBSERVATIONS:

Describe Nickel, Cobalt, and Mixture solutions here.

Two-Component System

PROCEDURE:

- 1. With a partner, determine the Absorbance vs. Wavelength of Ni and Cobalt from 360-600 nm. Since the Spec 20 must be re-set each time, have the nickel and the cobalt samples ready to be measured for each wavelength. Use cuvettes that match within 2% Transmittance.
- a) Choose the desired wavelength (360 nm). If there is a filter lever, make sure it is set to the correct range.
- b) Set the instrument.
- c) Measure the absorbance of the cobalt known and the nickel known at that wavelength.
- d) Change the wavelength (380 nm). Adjust the filter lever if needed.
- e) Re-set the instrument .
- f) Again measure the absorbance of nickel and cobalt at the new wavelength.
- g) Repeat the procedure every 20 nm until a wavelength of 600 has been measured.
- h) Find the wavelength of maximum absorbance (λ max) more accurately by finding regions of high absorbance and re-scanning them in steps of 5 nm.

Note: If you cannot read Absorbance to 3 decimal places, record transmittance and then convert to absorbance use the following formula:

A=2-log(%T)

2. **Now work on your own**, and use only one instrument for the rest of the readings:

Measuring the knowns:

a) Make sure the instrument is re-set at the nickel λ_{max} .

b) At the nickel λ_{max} , determine the absorbance (see data section) of the known nickel and known cobalt twice each, the second of each with a fresh sample.

- c) Re-set the machine at the cobalt λ_{max} .
- d) At the cobalt λ_{max} , measure the **known** nickel and the **known** cobalt **as above**.

Measuring the unknowns:

- e) Empty the cuvettes containing known nickel and cobalt solutions and refill them (with correct rinsing) with your **unknown** cobalt. Also fill another cuvette with the unknown mixture.
- f) Since the instrument is still at the cobalt λ_{max} , rezero and measure the **unknown** cobalt and **unknown** mixture at the cobalt λ_{max} . (Be sure to put your data in the correct table). **Take two readings of each as previousely described.**
- g) At the nickel λ_{max} , re-set the instrument.
- h) Now measure the **unknown** mixture at that wavelength. Again, take two readings of each.
- i) <u>All cuvettes must be rinsed out thoroughly with distilled water and turned upside down in</u> <u>the test tube rack to indicate they are clean.</u>

DATA:

Determination of λ_{max}

Use the extra space at the end to determine the two wavelengths more accurately by finding regions of highest absorbance for each metal and re-scanning them in 5 nm increments.

Wavelength (nm)	Absorbance of known Co solution	Absorbance of known Ni solution
360		
380		
400		
420		
440		
460		
480		
500		
520		
540		
560		
580		
600		

Attach a graph of absorbance vs. wavelength for both Co and Ni. Label each λ_{max} clearly.

DATA:

 $Co\;\lambda_{max}$

Concentration of known nickel solution	
Concentration of known cobalt solution	
Ni λ_{max}	

When less than 3 decimal places are obtained for absorbance, record %T, then calculate absorbance. Note: Calculate average absorbance after converting %T to absorbance.

% T or Absorbance of known nickel at the nickel λ_{max}	Average absorbance:
%T or Absorbance of known nickel at the cobalt λ_{max}	Average absorbance:

% T or Absorbance of known cobalt at the nickel λ_{max}	Average absorbance
% T or Absorbance of known cobalt at the cobalt λ_{max}	Average absorbance:

Unknown# (Cobalt):_____

% T or Absorbance of unknown cobalt # at the Cobalt λ_{max}	Average absorbance:
cobuit "at the cobuit remax	ubbolounce

Unknown# (mixture):_

% T or Absorbance of unknown mixture at Nickel λ_{max}	Average absorbance:	
%T or Absorbance of unknown mixture at Cobalt λ_{max}	Average absorbance:	

CALCULATIONS:

1. In the space below, calculate the extinction coefficients for **nickel** at the nickel λ_{max} and for **nickel** at the cobalt λ_{max} .

2. In the space below, calculate the extinction coefficients for **cobalt** at the cobalt λ_{max} and for **cobalt** at the nickel λ_{max} .

3. In the space below, calculate the concentration of your unknown cobalt solution:

4. In the space below, calculate the concentration of the cobalt and of the nickel in your mixture.

RESULTS:

Unknown	Concentration	
Co#		
Mixture#	Ni	Со

DISCUSSION:

Give one source of error (beyond your reasonable control) in this experiment, and state how it would affect your results.