Chemistry 1210
 Spectrophotometric Determination of Acetylsalicylic Acid

Name: \qquad Partner: \qquad

OBJECTIVE: \quad To quantitatively analyze a commercial aspirin tablet for ASA content by spectrophotometric means.

PROCEDURE: As in the chemistry 1210 lab manual, pages \qquad _.

OBSERVATIONS:

DATA:

Mass of weigh boat and ASA (g)	Mass of emptied weigh boat (g)	Mass of reagent grade ASA transferred to flask (g)	Mass of reagent grade ASA transferred to flask (mg)

$\lambda_{\max }$	nm

If less than three sig figs are obtained in absorbance readings, read \% T and convert to absorbance by calculation

Volume	$\mathbf{1 . 0 0} \mathbf{~ m L}$	$\mathbf{2 . 0 0} \mathbf{~ m L}$	$\mathbf{3 . 0 0} \mathbf{~ m L}$	$\mathbf{4 . 0 0} \mathbf{~ m L}$	$\mathbf{5 . 0 0} \mathbf{~ m L}$	ASA Tablet
Measured Absorbance or \% Transmittance	\mid	\mid	\mid		\mid	\mid
Average Absorbance					\mid	\mid

Mass of ASA tablet (mg)		Company's claimed ASA amount in tablet (mg)	

CALCULATIONS:

Standard Solution	$\mathbf{1 . 0 0} \mathrm{mL}$	$\mathbf{2 . 0 0} \mathrm{mL}$	$\mathbf{3 . 0 0} \mathrm{mL}$	$\mathbf{4 . 0 0} \mathrm{mL}$	$\mathbf{5 . 0 0} \mathrm{mL}$
Concentration $(\mathrm{mg}$ ASA $/ \mathrm{mL})$					

Sample calculation for concentration of standards:

Calculation of ASA concentration of final unknown ASA solution:

Mass ASA in tablet:
\% by Mass ASA in the tablet:

RESULTS:

Slope	Y-Intercept	Concentration of ASA in Final solution	Experimentally Determined Mass ASA in Tablet

DISCUSSION:

Did the tablet contain the claimed amount of ASA? Give a source of error beyond your reasonable control and explain if this error would give a higher or lower mass of ASA than the true value.

CONCLUSION:

QUESTIONS:

