Chemistry 1210 Quantitative Determination of a Two-Component System

Date:	Name:	Station #:
OBJECTIVE:	The objective of this experiment is to quanti composition of a two-component system usi methods.	5
PROCEDURE:	As in the Chemistry 1210 lab manual, page procedure as noted below.	36 plus additional

OBSERVATIONS:

Describe Nickel, Cobalt, and Mixture solutions here.

Two-Component System

PROCEDURE:

- 1. With a partner, determine the Absorbance vs. Wavelength of Ni and Cobalt from 350-550 nm. Since the Spec 20 must be zeroed each time, have the nickel and the cobalt samples ready to be measured for each wavelength.
- a) Choose the desired wavelength (360 nm).
- b) Zero the instrument .
- c) Measure the absorbance of the cobalt known and the nickel knowns at that wavelength.
- d) Change the wavelength (380 nm).
- e) Re-zero the instrument .
- f) Again measure the absorbance of nickel and cobalt at the new wavelength.
- g) Repeat the procedure every 20 nm until a wavelength of 600 has been measured.
- h) Find the wavelength of maximum absorbance (λ max) more accurately by finding regions of high absorbance and re-scanning them in steps of 5 nm.

Note: To convert transmittance to absorbance use the following formula:

A=2-log(%T)

3. **Now work on your own**, and use only one instrument for rest of the readings:

Measuring the knowns:

a) Make sure the instrument is zeroed at the nickel λ_{max} .

b) At the nickel λ_{max} , determine % transmittance and/or the absorbance (see data section) of the known nickel and known cobalt twice each, the second of each with a fresh sample.

- c) Re-zero the machine at the cobalt λ_{max} .
- d) At the cobalt λ_{max} , measure the **known** nickel and the **known** cobalt **as above**.

Measuring the unknowns:

- e) Empty the cuvettes containing known nickel and cobalt solutions and refill them (with correct rinsing) with your **unknown** cobalt. Also fill another cuvette with the unknown mixture.
- f) Since the instrument is still at the cobalt λ_{max} , rezero, and measure the **unknown** cobalt and **unknown** mixture at the cobalt λ_{max} . (Be sure to put your data in the correct table). Take two readings of each as previousely described.
- g) At the nickel λ_{max} , zero the instrument.
- h) Now measure the **unknown** mixture at that wavelength. Again, take two readings of each.

i) <u>All cuvettes must be rinsed out thoroughly with distilled water and turned</u> <u>upside down in the test tube rack to indicate they are clean.</u>

DATA:

Determination of λ_{max}

Use the extra space at the end to determine the two wavelengths more accurately by finding regions of highest absorbance for each metal and re-scanning them in 5 nm increments.

Wavelength	%T	Absorbance of known Co solution	%T	Absorbance of known Ni solution
360				
380				
400				
420				
440				
460				
480				
500				
520				
540				
560				
580				
600				

Attach a graph of absorbance vs. wavelength for both Co and Ni. Label each λ_{max} clearly.

DATA:

Concentration of known nickel solution	
Concentration of known cobalt solution	
Ni λ_{max}	
$Co \lambda_{max}$	

When less than 3 sig figs are obtained for absorbance, record %T, then calculate absorbance. Note: Calculate average absorbance after converting %T to absorbance.

% T or Absorbance of known nickel at the nickel λ_{max}	Average absorbance:
%T or Absorbance of known nickel at the cobalt λ_{max}	Average absorbance:

% T or Absorbance of known cobalt at the nickel λ_{max}	Average absorbance
% T or Absorbance of known cobalt at the cobalt λ_{max}	Average absorbance:

Unknown# (Cobalt):_____

% T or Absorbance of unknown cobalt #at		Average absorbance:
the Cobalt λ_{max}		

Unknown# (mixture):_____

% T or Absorbance of unknown mixture at Nickel λ_{max}	Average absorbance	:
%T or Absorbance of unknown mixture at Cobalt λ_{max}	Average absorbance	:

CALCULATIONS:

1. In the space below, calculate the extinction coefficients for **nickel** at the nickel λ_{max} and for **nickel** at the cobalt λ_{max} .

2. In the space below, calculate the extinction coefficients for **cobalt** at the cobalt λ_{max} and for **cobalt** at the nickel λ_{max} .

3. In the space below, calculate the concentration of your unknown cobalt solution:

4. In the space below, calculate the concentration of the cobalt and of the nickel in your mixture.

RESULTS:

Unknown	Concentration		
Co#			
Mixture#	Ni	Со	

DISCUSSION:

Give one source of error (beyond your reasonable control) in this experiment, and state how it would affect your results.