Chemistry 1210 Solution Calorimetry

Date:	Name: Partner:
OBJECTIVE:	To determine the enthalpy changes for a number of chemical reactions.
PROCEDURE:	As in the Chemistry 1210 lab manual, pages
OBSERVATIONS:	

DATA and CALCULATIONS:

REACTION A

Run	Reagen	Volume	Μ	T _i	T _{i avg}	T _f	ΔΤ	q	ΔH
	ts								
1	HCl								
	NaOH								
2	HCl								
	NaOH								

Sample calculation of q and ΔH :

REACTION B

Run	Reagents	Mass/ Volume	Ti	T _f	ΔΤ	q	ΔΗ
1	Na ₂ S ₂ O ₃ H ₂ O						
2	Na ₂ S ₂ O ₃ H ₂ O						
1	Na ₂ S ₂ O ₃ ·5H ₂ O H ₂ O						
2	Na ₂ S ₂ O ₃ ·5H ₂ O H ₂ O						

Sample calculation of q and ΔH :

REACTION C

Run	Reagents	Mass/	Ti	T_{f}	ΔΤ	q	ΔH
		Volume					
1	Mg						
	ribbon						
	HCl						
2	Mg						
	ribbon						
	HUI						

Sample calculation of q and ΔH :

REACTION D

Ru	Reagents	Mass/	T _i	T _f	ΔΤ	q	ΔH
n		Volume					
1	MgO						
	HCl						
2	MgO						
	HCl						

Sample calculation of q and ΔH :

REACTION E

E(i)

Ru	Reagent	Μ	Volum	T _i	T _{i avg}	T _f	ΔT	q	ΔH
n	s		e						
1	H ₃ PO ₄								
	NaOH								
2	H ₃ PO ₄								
	NaOH								

Sample calculation of q and ΔH :

E(ii)

*note for E(ii) & E(iii) $T_{i avg}$, volume of $H_3PO_4 \neq$ volume NaOH (calculate the weighted $T_{i avg}$)

Ru	Reagent	Μ	Volum	Ti	T _{i avg} *	T _f	ΔT	q	ΔH
n	S		e						
1	H ₃ PO ₄								
	NaOH								
2	H ₃ PO ₄								
	NaOH								

Sample calculation of $T_{i avg}$, q, and ΔH :

E(iii)

Ru	Reagent	Μ	Volum	Ti	T _{i avg} *	T _f	ΔT	q	ΔH
n	S		e						
1	H ₃ PO ₄								
	NaOH								
2	H ₃ PO ₄								
	NaOH								

Sample calculation of $T_{i avg}$, q, and ΔH :

SUMMARY TABLE:

Reaction	ΔH(1)	ΔH(2)	ΔH(avg)	Literature ∆H
A) HCl + NaOH				
$B_1) Na_2S_2O_3 + H_2O$				
$B_2) Na_2S_2O_3{\cdot}5H_2O \ +$				
H ₂ O				
C) Mg + HCl				
D) MgO + HCl				
E_i) $H_3PO_4 + NaOH$				
E _{ii}) H ₃ PO ₄ + 2NaOH				
E_{iii}) $H_3PO_4 + 3NaOH$				

Calculations of Literature ΔH for the above reactions (attach extra sheets as required) (*If prelab done, then no need to do this again, attach the marked prelab*)

DISCUSSION: (any sources of errors in the experiment beyond your control)