Kwantlen Polytechnic University Department of Chemistry Chemistry 1210 Final Examination Saturday, December 13, 2014

Name: \qquad Student \#: \qquad

Instructions:

- You have three hours to complete this exam.
- This exam consists of eighteen pages: This cover page and seventeen pages of questions. You should also have a formula sheet and a periodic table. Please ensure you have a complete paper, and obtain one immediately if you do not.
- There are $\mathbf{9 3}$ marks available in $\mathbf{3 0}$ questions. Plan your time appropriately.
- You are to work independently. Any sharing of any information of any kind in any way with anyone is strictly prohibited.
- Good luck!

Page	Mark	Max
2		5
3		2
4		6
5		4
6		6
7		5
8		8
9		5
10		5
11		8
12		6
13		5
14		7
15		2
16		93
17		
18		
Total		

1) [5 marks total] One potential mechanism for the reaction of chlorine gas with hydrogen gas:
$\mathrm{Cl}_{2} \underset{\mathrm{k}_{2}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} 2 \mathrm{Cl}$.
$\mathrm{Cl} \cdot+\mathrm{H}_{2} \xrightarrow{\mathrm{k}_{3}} \mathrm{HCl}+\mathrm{H}$. \quad (slow)
$\mathrm{H} \cdot+\mathrm{Cl} \xrightarrow{\mathrm{k}_{4}} \mathrm{HCl}$
a) [1 mark] What is the overall reaction?
b) [0.5 marks] Are there any reactive intermediates? If so, what are they?
c) [0.5 marks] Are there any catalysts? If so, what are they?
d) [3 marks] What rate law is predicted by the mechanism above?
2) [$\mathbf{2}$ marks] Polonium- 210 has a half-life of 138.38 days. It is found in tobacco leaves, where (when you smoke) it is inhaled into the lungs. There, it decays into lead. How long will it take for 99 percent of the polonium from a single cigarette to decay to lead in the lungs?
3) [6 marks total] Given the following unbalanced redox reaction, occurring in basic solution:
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{ClO}_{3}{ }^{-} \longrightarrow \mathrm{SO}_{3}{ }^{2-}+\mathrm{ClO}^{-}$
a) [4 marks] Balance the reaction.
b) [0.5 marks] How many electrons are transferred in the overall reaction?
c) [0.5 marks] What is the oxidizing agent?
d) [1 mark] What is the normality of a 0.10 M solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$?
4) [7 marks total] A battery is constructed using the two half-reactions:
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Co}(\mathrm{s})$

The overall reaction occurring in the battery is:
$2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Co}(\mathrm{s}) \rightleftharpoons 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Co}^{2+}(\mathrm{aq})$
The battery produces 1.051 V when run under standard conditions at $25^{\circ} \mathrm{C}$. Two litres of solution are used in each half-cell.
a) [1 mark] Give the (shorthand) cell notation for the battery.
b) [2 marks] Calculate the voltage that the battery will produce at $25^{\circ} \mathrm{C}$ if the $\left[\mathrm{Fe}^{3+}\right]=2.0 \times 10^{-4} \mathrm{M}$, the $\left[\mathrm{Fe}^{2+}\right]=5.0 \mathrm{M}$, and the $\left[\mathrm{Co}^{2+}\right]=0.80 \mathrm{M}$.
c) [1 mark] Over time, the voltage the battery will produce will:
i) Increase, because the concentration of reactants should increase
ii) Increase, because the concentration of products should increase
iii) Decrease, because the concentration of the reactants should increase
iv) Decrease, because the concentration of the products should increase
v) None of these
d) [2 marks] The battery is constructed using the conditions described above and a current of $5 \times 10^{-4} \mathrm{~A}$ is drawn from it for 321 minutes and 37 seconds. What will be the concentration of Fe^{3+} after that time?
e) [1 mark] The battery described in this problem may be recharged successfully. This means that which of the following statements is or are true for the battery? (Circle any and all that apply.)
i) The reduction potential of water is more positive than that of Co^{2+}
ii) The reduction potential of water is more negative than that of Co^{2+}
iii) The oxidation potential of water is more positive than that of Co^{2+}
iv) The oxidation potential of water is more negative than that of Co^{2+}
5) [3 marks] A concentration cell is set up according to the following half-reactions:

Half-cell 1: $2 \mathrm{H}^{+}(\mathrm{aq}, X \mathrm{M})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g}, 1$ bar)
Half-cell $2: 2 \mathrm{H}^{+}(\mathrm{aq}, \mathrm{Y} M)+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g}, 1$ bar)
The first half-cell uses a 2.0 M solution of a weak acid with a $\mathrm{K}_{\mathrm{a}}=5.0 \times 10^{-5}$. The second half-cell uses a 0.010 M solution of HClO_{4}. Calculate the voltage produced by the cell at $25^{\circ} \mathrm{C}$.
6) [5 marks total] $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ is a weak polyprotic acid, with $\mathrm{K}_{\mathrm{a} 1}=6.9 \times 10^{-3} ; \mathrm{K}_{\mathrm{a} 2}=6.3 \times 10^{-8}$; $K_{a 3}=4.8 \times 10^{-13}$.

Consider 40.00 mL of a 5.0 M solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$
a) [2 marks] Determine the pH of this solution
b) [$\mathbf{3}$ marks] Determine the pH after adding 20.00 mL of 5.0 M NaOH to the $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ solution.
7) [3 marks] Determine the pOH of a 0.45 M solution of HCl at $50.0^{\circ} \mathrm{C}$. $\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$, and the autohydrolysis of water reaction has $\Delta H^{\circ}=55.8 \mathrm{~kJ} / \mathrm{mol}$.
8) [5 marks total] A lab technician is trying to prepare a saturated solution of Copper(II) hydroxide. $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$ has a $\mathrm{K}_{\text {sp }}=4 \times 10^{-15}$. To do this, they add some $\mathrm{Cu}(\mathrm{OH})_{2}(97.57 \mathrm{~g} / \mathrm{mol})$ into a 1.500 L volumetric flask and stir.
a) [3 marks] Determine the amount of $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$ in grams that will dissolve.
b) [2 marks] Determine the pH of the prepared solution
9) [2 marks] For the reaction:

$$
A+3 B \longrightarrow 2 C+5 D
$$

the (experimental) rate law has been found to be rate $=k[A][B]$

From the information above, it can be deduced that:
a) The rate of disappearance of A is three times that of B.
b) The rate of appearance of C is 40 percent of that of D.
c) C and D must never appear in the reaction mechanism.
d) There must be a catalyst present in order for the reaction to proceed.
e) None of these
10) [5 marks] Given the following data for the mythical reaction $2 A+3 B \longrightarrow C+6 D$

Run	$[\mathrm{A}]$	$[\mathrm{B}]$	$-\frac{\Delta[A]}{\Delta t}\left(\frac{M}{S}\right)$
1	1.0	1.0	4.0
2	2.0	1.0	16.0
3	3.0	2.0	36.0

a) [2 marks] The values of x and y in the rate law rate $=k[A]^{x}[B]^{y}$ are:
i) $x=1$ and $y=0$
ii) $x=1$ and $y=1$
iii) $x=1$ and $y=2$
iv) $x=2$ and $y=0$
v) $x=2$ and $y=1$
vi) $x=2$ and $y=2$
b) [$\mathbf{2}$ marks] The value of the rate constant (without units) is:
i) 2.0
ii) 4.0
iii) 6.0
iv) 8.0
v) None of these
c) [1 mark] What will be the rate of disappearance of compound B in run 3?
11) [$\mathbf{2}$ marks] The rate of a certain reaction triples when the temperature is increased from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The molar energy of activation for the reaction is:
a) 4.6 J
b) 35.2 kJ
c) 352 J
d) 457 J
e) None of these
12) [2 marks] Consider the following reaction:
$\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
When 1.00 mol of $\mathrm{CO}(\mathrm{g})$ is mixed with 3.00 mol of $\mathrm{H}_{2}(\mathrm{~g})$ in a 2.0 L vessel at $250^{\circ} \mathrm{C}$ and the reaction is allowed to reach equilibrium, it is determined that 0.500 mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are present at equilibrium. Determine K_{c} at $250^{\circ} \mathrm{C}$.
a) 9.3×10^{-3}
b) 3.7×10^{-2}
c) 0.13
d) 0.15
e) 0.59
13) [1 mark] Consider the following reaction:

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-20.0 \mathrm{~kJ}
$$

If the system is at equilibrium, which of the following changes will push the equilibrium towards the reactants?
a) Increasing the volume
b) Adding a catalyst
c) Condensing water to remove it from the equilibrium
d) Increasing the pressure
e) Decreasing the temperature
14) [2 marks] The following equilibrium constants have been determined for oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ at $25^{\circ} \mathrm{C}$:

$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq})$	$\mathrm{K}_{\mathrm{a} 1}=6.5 \times 10^{-2}$
$2 \mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})$	$\mathrm{K}_{\mathrm{a} 2}=3.7 \times 10^{-9}$

Calculate the equilibrium constant for the following reaction at the same temperature:
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})$
a) 2.4×10^{-10}
b) 4.0×10^{-6}
c) 1.6×10^{-5}
d) 6.5×10^{-2}
e) 1.8×10^{7}
15) [2 marks] Consider the following equilibrium:
$\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=4.6 \times 10^{-3}$ at 800 K
If a sample of 15.0 g of $\mathrm{COCl}_{2}(\mathrm{~g})(98.9 \mathrm{~g} / \mathrm{mol})$ is placed in a 1.0 L flask at 800 K , the equilibrium concentration of $\mathrm{COCl}_{2}(\mathrm{~g})$ will be:
a) 0.0240 M
b) 0.0260 M
c) 0.126 M
d) 0.128 M
e) 0.152 M
16) [2 marks] Consider the following equilibrium:
$2 \mathrm{HCl}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=4.6 \times 10^{-3}$ at $800 \mathrm{~K}, \Delta \mathrm{H}^{\circ}=-40.5 \mathrm{~kJ}$

Determine K_{p} at 400 K
a) 3.7×10^{-9}
b) 1.0×10^{-5}
c) 4.6×10^{-3}
d) 2.0×10^{0}
e) 5.6×10^{3}
17) [5 marks total] Given the half-reactions:

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{O}_{6}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow \mathrm{IO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \varepsilon^{\circ}=1.6 \mathrm{~V} \\
\mathrm{IO}_{3}^{-}(\mathrm{aq})+5 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow \mathrm{HIO}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} & \varepsilon^{\circ}=1.13 \mathrm{~V}
\end{array}
$$

a) [2 marks] ε° for the disproportionation of the $\mathrm{IO}_{3}{ }^{-}$ion will be:
i) -2.73 V
ii) -1.365 V
iii) -0.47 V
iv) 0.47 V
v) 1.365 V
vi) 2.73 V
b) [2 marks] ε° for the half-reaction

$$
\mathrm{H}_{3} \mathrm{IO}_{6}+8 \mathrm{H}^{+}+8 \mathrm{e}^{-} \longrightarrow \mathrm{HIO}+5 \mathrm{H}_{2} \mathrm{O}
$$

will be:
i) -2.73 V
ii) -1.365 V
iii) -0.47 V
iv) 0.47 V
v) 1.365 V
vi) 2.73 V
c) [1 mark] A battery is constructed using the two half-reactions above. The anode halfreaction will be:
i) $\mathrm{H}_{3} \mathrm{IO}_{6}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow \mathrm{IO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}$ (I)
ii) $\mathrm{IO}_{3}^{-}(\mathrm{aq})+5 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow \mathrm{HIO}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$
iii) $\mathrm{IO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{3} \mathrm{IO}_{6}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-}$
iv) $\mathrm{HIO}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 1 \mathrm{O}_{3}^{-}(\mathrm{aq})+5 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-}$
18) [2 marks] What mass of potassium benzoate ($\mathrm{KC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}: 160.15 \mathrm{~g} / \mathrm{mol}$) does one need to add to 255 mL of 0.15 M benzoic acid $\left(\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right), \mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5}$, to prepare a solution with $\mathrm{pH}=$ 4.50? Assume no volume change when solid potassium benzoate is added.
a) 3.21 g
b) 12.6 g
c) 49.3 g
d) 50.1 g
e) 132 g
19) [$\mathbf{2}$ marks] Which solution, from the list below, would have the highest pH at $25^{\circ} \mathrm{C}$?
a) $1.00 \times 10^{-1} \mathrm{M} \mathrm{HCl}$
b) $1.00 \times 10^{-1} \mathrm{M} \mathrm{HNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}\right)$
c) $1.00 \times 10^{-1} \mathrm{M} \mathrm{NaNO}\left(\mathrm{K}_{\mathrm{a}}\left(\mathrm{HNO}_{2}\right)=4.5 \times 10^{-4}\right)$
d) $1.00 \times 10^{-5} \mathrm{M} \mathrm{NaOH}$
e) $1.00 \times 10^{-5} \mathrm{M} \mathrm{HCl}$
20) [2 marks] Which of the following acids would have the highest percent ionization:
a) $1.00 \times 10^{-2} \mathrm{M} \mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=6.3 \times 10^{-4}\right)$
b) $1.00 \times 10^{-3} \mathrm{M} \mathrm{HF}$
c) $1.00 \times 10^{-4} \mathrm{M} \mathrm{HF}$
d) $1.00 \times 10^{-2} \mathrm{M} \mathrm{HNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}\right)$
e) $1.00 \times 10^{-3} \mathrm{M} \mathrm{HNO}_{2}$
21) [2 marks] Which of the following salts would have the highest molar solubility:
a) $\mathrm{Fe}(\mathrm{OH})_{3} \quad \mathrm{~K}_{\text {sp }}=2.5 \times 10^{-39}$
b) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad \mathrm{~K}_{\mathrm{sp}}=1.0 \times 10^{-26}$
c) $\mathrm{NiS} \quad \mathrm{K}_{\text {sp }}=3.0 \times 10^{-19}$
d) $\mathrm{AgI} \quad \mathrm{K}_{\mathrm{sp}}=8.3 \times 10^{-17}$
e) $\mathrm{Zn}(\mathrm{OH})_{2} \quad \mathrm{~K}_{\mathrm{sp}}=2.1 \times 10^{-16}$
22) [2 marks] Determine the molar solubility of $\mathrm{Mg}(\mathrm{OH})_{2}\left(\mathrm{~K}_{\text {sp }}=1.8 \times 10^{-11}\right)$ in a solution that has a pH of 11.14.
a) $6.5 \times 10^{-9} \mathrm{M}$
b) $9.4 \times 10^{-6} \mathrm{M}$
c) $1.65 \times 10^{-4} \mathrm{M}$
d) $6.9 \times 10^{-4} \mathrm{M}$
e) $1.4 \times 10^{-3} \mathrm{M}$
23) [2 marks] When 0.608 grams of $\mathrm{KNO}_{3}(101.1 \mathrm{~g} / \mathrm{mol})$ is dissolved in 100.0 mL of water ($\mathrm{D}=1.00 \mathrm{~g} / \mathrm{mL}, \mathrm{S}=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$), the temperature of the resulting solution falls from $25.000^{\circ} \mathrm{C}$ to $24.500^{\circ} \mathrm{C}$. Given this information, $\Delta \mathrm{H}^{\circ}$ for the reaction
$\mathrm{KNO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{KNO}_{3}(\mathrm{aq})$
should be:
a) -210 J
b) -35 kJ
c) 35 kJ
d) 210 J
e) None of these
24) [2 marks] Given the reaction:
$2 \mathrm{NaOH}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}^{\circ}=-160 \mathrm{~kJ}$

When 2.00 g of $\mathrm{NaOH}(40.0 \mathrm{~g} / \mathrm{mol})$ is added to 100.0 mL of $.400 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{~S}=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right.$, $\mathrm{D}=1.00 \mathrm{~g} / \mathrm{mL})$, the amount of heat liberated should be:
a) 4 kJ
b) 6.4 kJ
c) 8 kJ
d) 10.4 kJ
e) 163 kJ
25) [2 marks] Given the reaction
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Delta \mathrm{H}^{\circ}=-5756 \mathrm{~kJ}$
and that the molar enthalpies of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are -393.5 kJ and -285.8 kJ , respectively, the molar enthalpy of formation of $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$ should be:
a) -2878 kJ
b) -250 kJ
c) -125 kJ
d) 125 kJ
e) 250 kJ
f) 2878 kJ
26) [3 marks] At $78.37^{\circ} \mathrm{C}$, the vapour pressure of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is 1 atm. Complete the table below with only the sign of the indicated thermodynamic quantity for the reaction
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g}, 1$ atm $) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})$
Use either + (greater than zero), - (less than zero), or 0 (zero).

$T\left({ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{G}^{\circ}$	$\Delta \mathrm{H}^{\circ}$	$\Delta \mathrm{S}^{\circ}$
50			
75			
100			

27) [10 marks total] The reaction
$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{s}) \rightleftharpoons 3 \mathrm{C}(\mathrm{l})+\mathrm{D}(\mathrm{g})$
has $K_{p}=2.07 \times 10^{-23}$ at $26^{\circ} \mathrm{C}$, and 7.23×10^{-21} at $77^{\circ} \mathrm{C}$.
a) [2 marks] ΔH° for the reaction is:
i) $-1911 \mathrm{~J} / \mathrm{mol}$
ii) $-1000 \mathrm{~J} / \mathrm{mol}$
iii) $-100 \mathrm{~kJ} / \mathrm{mol}$
iv) $100 \mathrm{~kJ} / \mathrm{mol}$
v) $1000 \mathrm{~J} / \mathrm{mol}$
vi) $1911 \mathrm{~J} / \mathrm{mol}$
b) [2 marks] Four electrons are transferred during the reaction. At $26^{\circ} \mathrm{C}, \varepsilon^{\circ}$ for the reaction will be:
i) -0.337 V
ii) -0.029 V
iii) -0.003 V
iv) 0.003 V
v) 0.029 V
vi) 0.337 V
c) [2 marks] If the pressure of $\mathrm{A}(\mathrm{g})$ is set to 1000 bar, and the pressure of $\mathrm{D}(\mathrm{g})$ is set to 1×10^{-20} bar, then at $77^{\circ} \mathrm{C}$, the reaction will be:
i) Spontaneous, because $\Delta \mathrm{S}^{\circ}{ }_{\text {univ }}<0$
ii) Spontaneous, because $\mathrm{Q}<\mathrm{K}$
iii) Spontaneous, because $\Delta G^{\circ}>0$
iv) Non-spontaneous, because $\Delta \mathrm{S}^{\circ}$ univ <0
v) Non-spontaneous, because $Q<K$
vi) Non-spontaneous, because $\Delta \mathrm{G}^{\circ}>0$
d) [1 mark] $\Delta \mathrm{S}^{\circ}$ for the reaction above is $-100 \mathrm{~J} / \mathrm{K}$. Is that value about what you would expect it to be? How do you know? (No marks for guessing. ())
e) [2 marks] ΔG° for the reaction at $125^{\circ} \mathrm{C}$ is 139.815 kJ . K_{p} for the reaction at $125^{\circ} \mathrm{C}$ is:
i) 5.70×10^{-1835}
ii) 3.76×10^{-59}
iii) 4.55×10^{-19}
iv) 2.20×10^{18}
v) 2.66×10^{58}
vi) 1.76×10^{1834}
f) [1 mark] At $25^{\circ} \mathrm{C}, \Delta \mathrm{E}^{\circ}-\Delta \mathrm{H}^{\circ}$ for the reaction should be:
i) -208 J
ii) -25 J
iii) -2.5 kJ
iv) 2.5 kJ
v) 25 J
vi) 208 J
28) [1 mark] What happens when a substance is heated and pressurized beyond its critical point?
a) All three phases coexist
b) A plasma is generated and this phase is unstable
c) The substance is entirely in the gas phase
d) The substance exists in a phase that has properties of both liquids and gases
e) It is impossible to reach such temperatures and pressures under experimental conditions
29) [2 marks] A liquid solution consists of 0.30 mole fraction of ethylene dibromide, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$, and 0.70 mole fraction of propylene dibromide, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$. Both ethylene dibromide and propylene dibromide are volatile liquids, and their vapour pressures at some temperature are 173 mmHg and 127 mmHg respectively. The vapour pressure of the mixture was determined to be 140.8 mmHg . From this information, which of the following is true:
a) The mixture is ideal and follows Raoult's law
b) The mixture is non-ideal and shows negative deviation from Raoult's law
c) The mixture is non-ideal and shows positive deviation from Raoult's law
d) The mixture contains about the same mass of ethylene dibromide and propylene dibromide
e) none of the above
30) [2 marks] Ammonia has a normal boiling point of $-33.4^{\circ} \mathrm{C}$. Determine the boiling point of ammonia in a pressurized flask at 3.00 atm taking into account $\Delta \mathrm{H}^{\circ}$ vap $\left(\mathrm{NH}_{3}\right)=23.4 \mathrm{~kJ} / \mathrm{mol}$.
a) $-270^{\circ} \mathrm{C}$
b) $-53.8^{\circ} \mathrm{C}$
c) $-8.65^{\circ} \mathrm{C}$
d) $33.8^{\circ} \mathrm{C}$
e) $75.1^{\circ} \mathrm{C}$
