

KWANTLEN POLYTECHNIC UNIVERSITY

CHEMISTRY 1210 Final Exam April 17, 2014

Time: 3 hours

Name: _____

Student #: _____

Instructions:

Answer all questions on the exam paper.

Circle correct answers for multiple choice questions.

Show all work for non-multiple choice problems.

The left hand pages may be used for rough work; these pages will not be graded.

A formula sheet and periodic table are provided; no other materials may be used.

Work independently. Cheating will not be tolerated.

This exam should have 34 questions.

Unless otherwise specified you may assume the temperature is 25°C

Page	Mark	Maximum
2		5
3		6
4		5
5		5
6		6.5
7		4
8		5
9		7.5
10		7
11		6
12		7
13		6
14		8
15		6
16		5
Total		89

1) **[5 marks total]** The following oxidation-reduction reaction occurs in *basic* solution:

 $P_4 + ClO_3^{-1} \longrightarrow PO_4^{3-} + Cl^{1-}$

a) **[4 marks]** Balance the reaction.

b) [1 mark] Which species is the reducing agent?

2) **[3 marks total]** A 25.00-mL sample of a solution of Mo³⁺ solution was reacted with 0.0600 N KMnO₄:

 $MnO_4^{-1}(aq) + Mo^{3+}(aq) \longrightarrow Mn^{2+} + MoO_2^{2+}(aq)$

a) **[1 mark]** If the Mo³⁺ in the reaction came from MoCl₃ (molar mass 202.3 grams), what is the equivalent mass of the MoCl₃?

b) [2 marks] The 25.00 mL sample of Mo³⁺ solution required 15.00 mL of the KMnO₄ solution for complete reaction. Determine the *molarity* of the Mo³⁺ in the solution.

- 3) [1 mark] The activation energy for the forward direction of a reaction is 50 kJ and for the reverse direction is 30 kJ. The Δ H for the overall reaction is:
 - a) -20 kJ
 - b) 20 kJ
 - c) -80 kJ
 - d) 80 kJ
 - e) There is not enough information to answer this question.
- 4) [2 marks] The uncoiling of DNA is a first order process with an activation energy of about 420 kJ/mol. At 50°C the half-life for uncoiling is estimated to be 2 minutes. What is the half-life at a normal body temperature of 37°C?
 - a) 2.8 x 10⁻³ min
 - b) 1.4 min
 - c) 2 min
 - d) 2.85 min
 - e) 1411 min

- 5) **[2 marks]** A reaction has a rate constant $k = 1.25 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$. If the initial concentration of the reactant is 0.0750 M, what concentration remains after 10.0 minutes?
 - a) 0 M
 - b) 0.0696 M
 - c) 0.0738 M
 - d) 0.0749 M
 - e) 0.150 M
- 6) [3 marks] The rate of the reaction:

 $3I^{-1} + S_2O_8^{-2} \longrightarrow I_3^{-1} + 2SO_4^{-2}$

was studied using the iodine clock technique and the following data were obtained (*t* is the time the reaction took):

Run	[I ¹⁻] ₀ (M)	$[S_2O_8^{2-}]_0(M)$	<i>t</i> (s)
1	0.0400	0.0400	88.0
2	0.0800	0.0400	44.0
3	0.0800	0.0800	22.1

- a) The order of this reaction with respect to $S_2O_8^{2-}$ is:
 - i) 0
 ii) ¹/₂
 iii) 1
 iv) 2
 v) 3
- b) The overall order of this reaction is:
 - i) 0
 - ii) ½
 - iii) 1
 - iv) 2
 - v) 3
- c) If a run is made with $[I^{1-}]_0 = 0.120$ M and $[S_2O_8^{2-}]_0 = 0.0400$, you would expect the reaction to complete in approximately:
 - i) 29 s
 - ii) 33 s
 - iii) 44 s
 - iv) 66 s
 - v) 88 s

7) **[5 marks total]** The Raschig reaction produces aqueous hydrazine, N₂H₄(aq), from NH₃(aq) and OCl⁻¹(aq) in basic, aqueous solution. A proposed mechanism is:

Step 1 (fast):	$NH_3(aq) + OCl^{-1}(aq) \xrightarrow{k_1} NH_2Cl(aq) + OH^{-1}(aq)$
Step 2 (slow):	$\mathrm{NH}_{2}\mathrm{Cl}(\mathrm{aq}) + \mathrm{NH}_{3}(\mathrm{aq}) \xrightarrow{k_{2}} \mathrm{N}_{2}\mathrm{H}_{5}^{+1}(\mathrm{aq}) + \mathrm{Cl}^{-1}(\mathrm{aq})$
Step 3 (fast):	$N_2H_5^{+1}(aq) + OH^{-1} \xrightarrow{k_3} N_2H_4(aq) + H_2O(l)$

a) **[3 marks]** Determine the rate law based on this reaction mechanism, show all your work clearly.

b) [1 mark] The following substances are intermediates: _____

c) [1 mark] This reaction mechanism involves a catalyst (circle one): YES NO

8) [2 marks] Find K_p for the following reaction at 25°C:

9) [2.5 marks total] For the equilibrium mixture at 200°C:

 $NH_4HS(s) \implies NH_3(g) + H_2S(g) \quad \Delta H > 0$

Indicate if the partial pressure of NH₃ will increase, decrease or remain the same when the following changes are made:

(Circle your choice:	I – increase	D – decrease	NC – no change)		
Add some Ne			Ι	D	NC
Add some H ₂ S			Ι	D	NC
Add some NH ₄ HS			Ι	D	NC
Increase the temperature	re		Ι	D	NC
Double the volume of the container (at constant T)			Ι	D	NC

10) [2 marks] Given the following equilibria:

K_c for the equilibrium:

 $2NO_2(g) \implies N_2(g) + 2O_2(g)$ will be:

a) 2.5×10^{-24} b) 5.3×10^{-15} c) 2.1×10^{-14} d) 2.3×10^{4} e) 4.8×10^{13} 11) [2 marks] At a given temperature, $K_c = 3.24$ for the reaction:

 $H_2(g) + CO_2(g) \Longrightarrow H_2O(g) + CO(g)$

If 0.800 mol of both H_2 and CO_2 are placed in a 1.00 L container at this temperature, when the system comes to equilibrium the concentration of CO(g) will be:

- a) 1.60 M
- b) 0.800 M
- c) 0.611 M
- d) 0.514 M
- e) 0.247 M

12) **[1 mark]** For the reaction:

 $I_2(g) + Br_2(g) \Longrightarrow 2IBr(g) K_p = 280$

If a container is filled with these gases, such that $P(I_2) = 10.0$ bar, $P(Br_2) = 5.0$ bar, and P(IBr) = 20.0 bar, in which direction will the reaction proceed?

- a) The reaction proceeds to the left.
- b) The reaction proceeds to the right.
- c) The reaction is at equilibrium.
- d) The reaction volume is required in order to answer this question.
- e) The temperature is required in order to answer this question.

13) [1 mark] Choose the correct statement when the reaction

 $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$

is at equilibrium:

- a) The rate constant for the forward reaction is equal to the rate constant for the reverse reaction.
- b) The rate for the forward reaction is equal to the rate for the reverse reaction.
- c) The concentrations of all reactants and products are equal.
- d) Increasing the volume of the reaction container will increase the yield of ammonia.
- e) The equilibrium expression for the reaction is $K_c = \frac{[N_2][H_2]^3}{[NH_3]^2}$

- 14) [2 marks] An indicator ($pK_a = 5.0$) changes colour from yellow to blue. It last appears yellow when $[Ind^{-1}]/[HInd] = 0.04$ and appears completely blue when $[Ind^{-1}]/[HInd] = 4$.
 - a) Calculate the pH range over which this indicator changes colour and place those pH values in the appropriate blanks below.

pH range: _____(yellow) to _____(blue)

b) Would this be a suitable indicator to use for the titration of NH₃ with HCl? (Circle your choice.)

Yes No

15) [1 mark] In the equilibrium system

 $NH_3(aq) + H_2O(l) \implies NH_2^{-1} + H_3O^+(aq)$

Bronsted-Lowry theory would designate:

- a) NH_3 and H_2O as the bases.
- b) H_2O and OH^{1-} as a conjugate pair.
- c) NH_2^{1-} and H_3O^+ as the acids.
- d) NH_2^{1-} and H_2O as a conjugate pair.
- e) NH₃ as amphiprotic.
- 16) [2 marks] A 10.0 mL sample of a 0.125 M solution of an unknown monoprotic acid has a pH = 2.95. What is its ionization constant, K_a?
 - a) 1.0 x 10⁻⁷
 - b) 1.3 x 10⁻⁶
 - c) 1.0×10^{-5}
 - d) 1.1 x 10⁻³
 - e) 9.8 x 10^{-3}

- 17) [3 marks] Methylamine, CH₃NH₂, has a $K_b = 3.2 \times 10^{-5}$. What is its percent ionization in 1.0 and 0.1 M solutions, respectively?
 - a) 0.018% and 0.056%
 - b) 0.032% and 0.0032%
 - c) 0.56% and 1.8%
 - d) 0.56% in both
 - e) 0.32% in both
- 18) [2.5 marks] Match the descriptions given below with one of the mixtures described in questions (a) (e):
 - I A solution with a pH less than 7 that is not a buffer
 - II A buffer solution with a pH between 4 and 7
 - III A solution with a pH of 7
 - IV A buffer solution with a pH between 7 and 10
 - V A solution with a pH greater than 7 that is not a buffer
 - a) A mixture of 1 mole NaOH and 1 mole NaCl in enough water to make 1.0 L
 - b) A mixture of 1 mole NaCl and 1 mole CaCl₂ in enough water to make 1.0 L
 - c) A mixture of 1 mole NaF and 0.5 mole HF in enough water to make 1.0 L
 - d) A mixture of 50.0 mL 0.10 M HCl with 25.0 mL 0.10 M NH₃
 - e) A mixture of 25.0 mL 0.10 M HCl with 50.0 mL 0.10 M NH_3
- 19) [2 marks] What mass of sodium acetate (molar mass 82 g) should be dissolved in 200.0 mL of 0.20 M acetic acid to form a buffer of pH = 5.0? K_a for acetic acid is 1.8 x 10⁻⁵.

20) **[3 marks]** What is the pH at the equivalence point for the titration of 0.10 M benzoic acid by 0.10 M sodium hydroxide? (K_a for benzoic acid is 6.3×10^{-5})

- 21) [2 marks] How many moles of SrF_2 will dissolve in 1 L of 0.10 M $Sr(NO_3)_2$ if K_{sp} for SrF_2 is 7.9 x 10⁻¹⁰?
 - a) 2.8 x 10⁻⁵
 - b) 4.4 x 10⁻⁵
 - c) 7.9 x 10⁻⁸
 - d) 4.0 x 10⁻⁹
 - e) 7.9 x 10⁻⁹
- 22) **[2 marks]** A solution is 0.120 M in Pb²⁺. If the K_{sp} for PbCrO₄ = 1.8×10^{-14} . In order to precipitate 99.9% of all the Pb²⁺ present, the [CrO₄²⁻] must be:
 - a) 1.8×10^{-17} b) 1.8×10^{-14} c) 1.5×10^{-13} d) 1.5×10^{-10} e) 1.3×10^{-7}

23) [6 marks total] Given the reaction:

 $2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g) \qquad \Delta H^{\circ}_{298} = -189.32 \text{ kJ}$

a) **[2 marks]** Estimate the bond dissociation energy for the O-O single bond. The bond energy for the O₂ molecule is 498.3 kJ/mol, and the enthalpies of vaporization of $H_2O_2(aq)$ and $H_2O(l)$ are approximately equal.

- b) **[1 mark]** Give two reasons why your answer above is an estimate and not an accurate calculation of the bond dissociation energy.
- c) **[3 marks]** One litre of a solution initially 0.0100 M in H_2O_2 and at 25.000°C is reacted. If all the heat produced in the reaction is retained in the solution, what would be the final temperature? Assume the specific heat capacity of the solution to be 4.184 J g⁻¹K⁻¹, and that the density of the solution is 1.00 g/mL.

24) [2 marks] Given the reaction:

 $C_4H_8(l) + 6O_2(g) \longrightarrow 4CO_2(g) + 4H_2O(l) \Delta H^\circ = -2696.9 \text{ kJ}$

and that the molar enthalpies of formation of $CO_2(g)$ and $H_2O(l)$ are -393.5 kJ and -285.8 kJ respectively, the molar enthalpy of formation of butane ($C_4H_8(l)$) is:

- a) +2017 kJ/mol
 b) -20.3 kJ/mol
 c) -107.6 kJ/mol
 d) -2017 kJ/mol
- e) +20.3 kJ/mol

25) [8 marks total] For the following system:

 $(NH_4)_2SO_4(s) \implies 2NH_3(g) + H_2O(g) + SO_3(g)$ $\Delta H^{\circ}_{298} = +449.6 \text{ kJ}$ $\Delta S^{\circ}_{298} = +609.62 \text{ J/mol K}$

- a) $\Delta G^{\circ}_{298} = 267.9 \text{ kJ}$
 - i) [2 marks] K_{p,298} for this reaction is:
 - (1) 1.0 x 10⁻⁴⁶⁹⁶
 (2) 1.1 x 10⁻⁴⁷
 (3) 2.0 x 10⁻⁵
 (4) 0.90
 (5) 9.1 x 10⁴⁶
 - ii) **[2 marks]** Determine the value of ΔG_{298} when P(NH₃) = 0.0010 bar, P(H₂O) = 0.0020 bar and P(SO₃) = 0.0020 bar.

iii) [1 mark] Under the conditions in part (c) the forward reaction is: (circle one)

spontaneous	
-------------	--

non-spontaneous

b) **[1 mark]** At what temperature will this reaction be at equilibrium under standard conditions?

- c) [2 marks] $K_{p,1000}$ for this reaction will be:
 - i) 4.4×10^{-9} ii) 1.0×10^{-14} iii) 2.3×10^{8} iv) 9.9×10^{13} v) 8.8×10^{835}
- 26) [3 marks total] A concentration cell uses a standard hydrogen electrode (SHE) for one half cell. The other half-cell also uses $H_2(g)$ at 1 bar pressure, but the hydrogen ions in solution come from a weak acid. The cell so constructed produces 0.245 V.

a) **[0.5 marks]** The SHE is the (circle one): ANODE CATHODE

b) **[0.5 marks]** The process occurring at the SHE is (circle one):

OXIDATION REDUCTION

c) [2 marks] Determine the pH of the buffered solution.

27) [2 marks] Determine the equilibrium constant (K_c) for the following reaction at 25°C.

 $Pb^{2+}(aq) + Cu(s) \longrightarrow Pb(s) + Cu^{2+}(aq)$

Given the standard reduction potentials: $Pb^{2+}/Pb = -0.125 V$ and $Cu^{2+}/Cu = +0.337 V$

- a) 2.41 x 10⁻¹⁶
- b) 6.80 x 10⁻⁸
- c) 1.65×10^{-7}
- d) 1.46×10^7
- e) 4.15×10^{15}

28) [2 marks] Given the reaction:

 $2Al(s) + 3Ni^{2+}(aq) \longrightarrow 2Al^{3+}(Aq) + 3Ni(s) \qquad \epsilon^{\circ} = +1.4100 V$

What would be the voltage if $[Ni^{2+}] = 0.020$ M and $[Al^{3+}] = 3.60$ M?

- a) 1.3880 V
 b) 1.4322 V
 c) 1.4712 V
 d) 1.3488 V
 e) 1.3182 V
- 29) [2 marks] A copper electrode weighs 35.42 g before electrolysis (of a CuSO₄ solution) and 36.69 g after. The electrolysis was performed using a current of 3.50 amperes. How long did the electrolysis take?
 - a) 9.2 s
 - b) 275 s
 - c) 551 s
 - d) 1102 s
 - e) $1.35 \times 10^4 \text{ s}$

30) [2 marks] Given the reaction:

- 31) **[1 mark]** The normal boiling point of a liquid:
 - a) Is the temperature at which the liquid and vapour are in equilibrium
 - b) Varies with the atmospheric pressure
 - c) Is the temperature at which the vapour pressure of the liquid is 1 atm
 - d) Is the temperature at which the vapour pressure of the liquid equals the external pressure
 - e) Is directly proportional to the molar mass of the liquid.
- 32) **[2 marks]** At 35°C, the vapour pressure of CS₂ is 512 mmHg, and of acetone, CH₃COCH₃, is 344 mmHg. It is known that the acetone-CS₂ intermolecular forces are weaker than the acetone-acetone or CS₂-CS₂ intermolecular forces. Given this information, you would expect that:
 - a) A mixture of 100.0 mL of acetone and 100.0 mL of CS_2 has a volume of 200.0 mL.
 - b) A mixture of 100.0 mL of acetone and 100.0 mL of CS_2 has a volume less than 200.0 mL.
 - c) When acetone and CS_2 are mixed at 35°C heat is absorbed.
 - d) When acetone and CS_2 are mixed at 35°C heat is evolved.
 - e) The vapour pressure above the solution would be lower than predicted.
- 33) [3 marks] The primary constituent of lemon oil is the hydrocarbon, limonene, that is 88.16% C and 11.84% H. A solution of 8.362 g of limonene in 50.00 g of benzene freezes at 2.37°C. Pure benzene freezes at 5.5°C. The freezing point depression constant for benzene is 5.12°C kg/mol. Determine the molecular formula of limonene.

- 34) **[5 marks total]** A certain compound has a normal melting point of 41°C and a normal boiling point of 123°C. The triple point is at 39°C and 85 mmHg.
 - a) **[3 marks]** Sketch the phase diagram for this substance. Label all regions, lines and points appropriately.

b) **[1 mark]** Does the solid phase of this substance have a density greater or less than that of the liquid phase? How do you know? (No marks for guessing. ⁽³⁾)

c) [1 mark] Describe what happens when a sample of this substance at 2 atm and a temperature of 20°C is heated at constant pressure to a temperature of 50°C.