CHEMISTRY 1210
Final Exam
April 17, 2014
Time: 3 hours

Name: \qquad Student \#: \qquad

Instructions:

Answer all questions on the exam paper.
Circle correct answers for multiple choice questions.

Show all work for non-multiple choice problems.

The left hand pages may be used for rough work; these pages will not be graded.

A formula sheet and periodic table are provided; no other materials may be used.

Work independently. Cheating will not be tolerated.

This exam should have 34 questions.
Unless otherwise specified you may assume the temperature is $25^{\circ} \mathrm{C}$

Page	Mark	Maximum
$\mathbf{2}$		5
$\mathbf{3}$		6
$\mathbf{4}$		5
$\mathbf{5}$		5
$\mathbf{6}$		6.5
$\mathbf{7}$		4
$\mathbf{8}$		5
$\mathbf{9}$		7.5
$\mathbf{1 0}$		7
$\mathbf{1 1}$		6
$\mathbf{1 2}$		7
$\mathbf{1 3}$		6
$\mathbf{1 4}$		8
$\mathbf{1 5}$		6
$\mathbf{1 6}$		5
Total		89

1) [$\mathbf{5}$ marks total] The following oxidation-reduction reaction occurs in basic solution:
$\mathrm{P}_{4}+\mathrm{ClO}_{3}{ }^{-1} \longrightarrow \mathrm{PO}_{4}{ }^{3-}+\mathrm{Cl}^{1-}$
a) [4 marks] Balance the reaction.
b) [1 mark] Which species is the reducing agent?
2) [$\mathbf{3}$ marks total] A $25.00-\mathrm{mL}$ sample of a solution of Mo^{3+} solution was reacted with $0.0600 \mathrm{~N} \mathrm{KMnO}_{4}$:
$\mathrm{MnO}_{4}^{-1}(\mathrm{aq})+\mathrm{Mo}^{3+}(\mathrm{aq}) \longrightarrow \mathrm{Mn}^{2+}+\mathrm{MoO}_{2}^{2+}(\mathrm{aq})$
a) [1 mark] If the Mo^{3+} in the reaction came from MoCl_{3} (molar mass 202.3 grams), what is the equivalent mass of the MoCl_{3} ?
b) [2 marks] The 25.00 mL sample of Mo^{3+} solution required 15.00 mL of the KMnO_{4} solution for complete reaction. Determine the molarity of the Mo^{3+} in the solution.
3) [1 mark] The activation energy for the forward direction of a reaction is 50 kJ and for the reverse direction is 30 kJ . The $\Delta \mathrm{H}$ for the overall reaction is:
a) -20 kJ
b) 20 kJ
c) -80 kJ
d) 80 kJ
e) There is not enough information to answer this question.
4) [2 marks] The uncoiling of DNA is a first order process with an activation energy of about $420 \mathrm{~kJ} / \mathrm{mol}$. At $50^{\circ} \mathrm{C}$ the half-life for uncoiling is estimated to be 2 minutes. What is the half-life at a normal body temperature of $37^{\circ} \mathrm{C}$?
a) $2.8 \times 10^{-3} \mathrm{~min}$
b) 1.4 min
c) 2 min
d) 2.85 min
e) 1411 min
5) [2 marks] A reaction has a rate constant $\mathrm{k}=1.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. If the initial concentration of the reactant is 0.0750 M , what concentration remains after 10.0 minutes?
a) 0 M
b) 0.0696 M
c) 0.0738 M
d) 0.0749 M
e) 0.150 M
6) [3 marks] The rate of the reaction:

$$
3 \mathrm{I}^{-1}+\mathrm{S}_{2} \mathrm{O}_{8}^{-2} \longrightarrow \mathrm{I}_{3}^{-1}+2 \mathrm{SO}_{4}^{-2}
$$

was studied using the iodine clock technique and the following data were obtained $(t$ is the time the reaction took):

Run	$\left[\mathrm{I}^{1-}\right]_{\mathrm{o}}(\mathrm{M})$	$\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]_{\mathrm{o}}(\mathrm{M})$	$t(\mathrm{~s})$
1	0.0400	0.0400	88.0
2	0.0800	0.0400	44.0
3	0.0800	0.0800	22.1

a) The order of this reaction with respect to $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ is:
i) 0
ii) $1 / 2$
iii) 1
iv) 2
v) 3
b) The overall order of this reaction is:
i) 0
ii) $1 / 2$
iii) 1
iv) 2
v) 3
c) If a run is made with $\left[\mathrm{I}^{1-}\right]_{\mathrm{o}}=0.120 \mathrm{M}$ and $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]_{\mathrm{o}}=0.0400$, you would expect the reaction to complete in approximately:
i) 29 s
ii) 33 s
iii) 44 s
iv) 66 s
v) 88 s
7) [5 marks total] The Raschig reaction produces aqueous hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})$, from $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{OCl}^{-1}(\mathrm{aq})$ in basic, aqueous solution. A proposed mechanism is:

Step 1 (fast): $\quad \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{OCl}^{-1}(\mathrm{aq}) \xrightarrow{\mathrm{k}_{1}} \mathrm{NH}_{2} \mathrm{Cl}(\mathrm{aq})+\mathrm{OH}^{-1}(\mathrm{aq})$
Step 2 (slow): $\quad \mathrm{NH}_{2} \mathrm{Cl}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \xrightarrow{\mathrm{k}_{2}} \mathrm{~N}_{2} \mathrm{H}_{5}{ }^{+1}(\mathrm{aq})+\mathrm{Cl}^{-1}(\mathrm{aq})$
Step 3 (fast): $\quad \mathrm{N}_{2} \mathrm{H}_{5}{ }^{+1}(\mathrm{aq})+\mathrm{OH}^{-1} \xrightarrow{\mathrm{k}_{3}} \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
a) [3 marks] Determine the rate law based on this reaction mechanism, show all your work clearly.
b) [1 mark] The following substances are intermediates: \qquad
c) [1 mark] This reaction mechanism involves a catalyst (circle one): YES NO
8) [2 marks] Find K_{p} for the following reaction at $25^{\circ} \mathrm{C}$:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=2.4 \times 10^{-3}$ at $25^{\circ} \mathrm{C}$
a) 3.9×10^{-10}
b) 5.6×10^{-8}
c) 3.9×10^{-6}
d) 5.6×10^{-4}
e) 1.5
f) 100
9) [2.5 marks total] For the equilibrium mixture at $200^{\circ} \mathrm{C}$:
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad \Delta \mathrm{H}>0$
Indicate if the partial pressure of NH_{3} will increase, decrease or remain the same when the following changes are made:

| (Circle your choice: | I - increase | $\mathrm{D}-$ decrease | $\mathrm{NC}-$ no change) |
| :--- | :--- | :--- | :--- | :--- |
| Add some Ne | I | D | NC |
| Add some $\mathrm{H}_{2} \mathrm{~S}$ | I | D | NC |
| Add some $\mathrm{NH}_{4} \mathrm{HS}$ | I | D | NC |
| Increase the temperature | I | D | NC |
| Double the volume of the container (at constant T) | I | D | NC |

10) [2 marks] Given the following equilibria:

$$
\begin{array}{ll}
1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c}}=4.8 \times 10^{-10} \\
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons & \rightleftharpoons \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
\end{array} \mathrm{K}_{\mathrm{c}}=1.1 \times 10^{-5}=2
$$

K_{c} for the equilibrium:
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
will be:
a) 2.5×10^{-24}
b) 5.3×10^{-15}
c) 2.1×10^{-14}
d) 2.3×10^{4}
e) 4.8×10^{13}
11) [2 marks] At a given temperature, $\mathrm{K}_{\mathrm{c}}=3.24$ for the reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

If 0.800 mol of both H_{2} and CO_{2} are placed in a 1.00 L container at this temperature, when the system comes to equilibrium the concentration of $\mathrm{CO}(\mathrm{g})$ will be:
a) 1.60 M
b) 0.800 M
c) 0.611 M
d) 0.514 M
e) 0.247 M
12) [1 mark] For the reaction:

$$
\mathrm{I}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{IBr}(\mathrm{~g}) \mathrm{K}_{\mathrm{p}}=280
$$

If a container is filled with these gases, such that $\mathrm{P}\left(\mathrm{I}_{2}\right)=10.0 \mathrm{bar}, \mathrm{P}\left(\mathrm{Br}_{2}\right)=5.0$ bar, and $\mathrm{P}(\mathrm{IBr})=20.0$ bar, in which direction will the reaction proceed?
a) The reaction proceeds to the left.
b) The reaction proceeds to the right.
c) The reaction is at equilibrium.
d) The reaction volume is required in order to answer this question.
e) The temperature is required in order to answer this question.
13) [1 mark] Choose the correct statement when the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

is at equilibrium:
a) The rate constant for the forward reaction is equal to the rate constant for the reverse reaction.
b) The rate for the forward reaction is equal to the rate for the reverse reaction.
c) The concentrations of all reactants and products are equal.
d) Increasing the volume of the reaction container will increase the yield of ammonia.
e) The equilibrium expression for the reaction is $K_{c}=\frac{\left[N_{2}\right]\left[H_{2}\right]^{3}}{\left[N H_{3}\right]^{2}}$
14) [2 marks] An indicator $\left(\mathrm{pK}_{\mathrm{a}}=5.0\right)$ changes colour from yellow to blue. It last appears yellow when $\left[\right.$ Ind $\left.^{-1}\right] /[\mathrm{HInd}]=0.04$ and appears completely blue when $\left[\right.$ Ind $\left.^{-1}\right] /[\mathrm{HInd}]=4$.
a) Calculate the pH range over which this indicator changes colour and place those pH values in the appropriate blanks below.
pH range: \qquad (yellow) to \qquad (blue)
b) Would this be a suitable indicator to use for the titration of NH_{3} with HCl ? (Circle your choice.)

Yes No
15) [1 mark] In the equilibrium system
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{2}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
Bronsted-Lowry theory would designate:
a) NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ as the bases.
b) $\mathrm{H}_{2} \mathrm{O}$ and OH^{1-} as a conjugate pair.
c) $\mathrm{NH}_{2}{ }^{1-}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$as the acids.
d) $\mathrm{NH}_{2}{ }^{1-}$ and $\mathrm{H}_{2} \mathrm{O}$ as a conjugate pair.
e) NH_{3} as amphiprotic.
16) [2 marks] A 10.0 mL sample of a 0.125 M solution of an unknown monoprotic acid has a $\mathrm{pH}=2.95$. What is its ionization constant, K_{a} ?
a) 1.0×10^{-7}
b) 1.3×10^{-6}
c) 1.0×10^{-5}
d) 1.1×10^{-3}
e) 9.8×10^{-3}
17) [3 marks] Methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, has a $\mathrm{K}_{\mathrm{b}}=3.2 \times 10^{-5}$. What is its percent ionization in 1.0 and 0.1 M solutions, respectively?
a) 0.018% and 0.056%
b) 0.032% and 0.0032%
c) 0.56% and 1.8%
d) 0.56% in both
e) 0.32% in both
18) [2.5 marks] Match the descriptions given below with one of the mixtures described in questions (a) - (e):

I - A solution with a pH less than 7 that is not a buffer
II - A buffer solution with a pH between 4 and 7
III - A solution with a pH of 7
IV - A buffer solution with a pH between 7 and 10
V - A solution with a pH greater than 7 that is not a buffer
a) A mixture of 1 mole NaOH and 1 mole NaCl in enough water to make 1.0 L
b) A mixture of 1 mole NaCl and 1 mole CaCl_{2} in enough water to make 1.0 L
c) A mixture of 1 mole NaF and 0.5 mole HF in enough water to make 1.0 L
d) A mixture of 50.0 mL 0.10 M HCl with $25.0 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NH}_{3}$
e) A mixture of 25.0 mL 0.10 M HCl with $50.0 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NH}_{3}$
19) [$\mathbf{2}$ marks] What mass of sodium acetate (molar mass 82 g) should be dissolved in 200.0 mL of 0.20 M acetic acid to form a buffer of $\mathrm{pH}=5.0 ? \mathrm{~K}_{\mathrm{a}}$ for acetic acid is 1.8×10^{-5}.
20) [3 marks] What is the pH at the equivalence point for the titration of 0.10 M benzoic acid by 0.10 M sodium hydroxide? (K_{a} for benzoic acid is 6.3×10^{-5})
21) [2 marks] How many moles of SrF_{2} will dissolve in 1 L of $0.10 \mathrm{M} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ if $\mathrm{K}_{\text {sp }}$ for SrF_{2} is 7.9×10^{-10} ?
a) 2.8×10^{-5}
b) 4.4×10^{-5}
c) 7.9×10^{-8}
d) 4.0×10^{-9}
e) 7.9×10^{-9}
22) [2 marks] A solution is 0.120 M in Pb^{2+}. If the $\mathrm{K}_{\text {sp }}$ for $\mathrm{PbCrO}_{4}=1.8 \times 10^{-14}$. In order to precipitate 99.9% of all the Pb^{2+} present, the $\left[\mathrm{CrO}_{4}{ }^{2-}\right]$ must be:
a) 1.8×10^{-17}
b) 1.8×10^{-14}
c) 1.5×10^{-13}
d) 1.5×10^{-10}
e) 1.3×10^{-7}
23) [6 marks total] Given the reaction:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}} 298=-189.32 \mathrm{~kJ}
$$

a) [2 marks] Estimate the bond dissociation energy for the O-O single bond. The bond energy for the O_{2} molecule is $498.3 \mathrm{~kJ} / \mathrm{mol}$, and the enthalpies of vaporization of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are approximately equal.
b) [1 mark] Give two reasons why your answer above is an estimate and not an accurate calculation of the bond dissociation energy.
c) [$\mathbf{3}$ marks] One litre of a solution initially 0.0100 M in $\mathrm{H}_{2} \mathrm{O}_{2}$ and at $25.000^{\circ} \mathrm{C}$ is reacted. If all the heat produced in the reaction is retained in the solution, what would be the final temperature? Assume the specific heat capacity of the solution to be $4.184 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$, and that the density of the solution is $1.00 \mathrm{~g} / \mathrm{mL}$.
24) [2 marks] Given the reaction:

$$
\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{l})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}^{\circ}=-2696.9 \mathrm{~kJ}
$$

and that the molar enthalpies of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(1)$ are -393.5 kJ and -285.8 kJ respectively, the molar enthalpy of formation of butane $\left(\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{l})\right)$ is:
a) $+2017 \mathrm{~kJ} / \mathrm{mol}$
b) $-20.3 \mathrm{~kJ} / \mathrm{mol}$
c) $-107.6 \mathrm{~kJ} / \mathrm{mol}$
d) $-2017 \mathrm{~kJ} / \mathrm{mol}$
e) $+20.3 \mathrm{~kJ} / \mathrm{mol}$
25) [8 marks total] For the following system:

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{SO}_{3}(\mathrm{~g}) \\
& \Delta \mathrm{H}^{\circ}{ }_{298}=+449.6 \mathrm{~kJ} \\
& \Delta \mathrm{~S}^{\circ}{ }_{298}=+609.62 \mathrm{~J} / \mathrm{mol} \mathrm{~K}
\end{aligned}
$$

a) $\Delta \mathrm{G}^{\circ}{ }_{298}=267.9 \mathrm{~kJ}$
i) [2 marks] $\mathrm{K}_{\mathrm{p}, 298}$ for this reaction is:
(1) 1.0×10^{-4696}
(2) 1.1×10^{-47}
(3) 2.0×10^{-5}
(4) 0.90
(5) 9.1×10^{46}
ii) [2 marks] Determine the value of $\Delta \mathrm{G}_{298}$ when $\mathrm{P}\left(\mathrm{NH}_{3}\right)=0.0010$ bar, $\mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.0020$ bar and $\mathrm{P}\left(\mathrm{SO}_{3}\right)=0.0020$ bar.
iii) [1 mark] Under the conditions in part (c) the forward reaction is: (circle one)
b) [1 mark] At what temperature will this reaction be at equilibrium under standard conditions?
c) [2 marks] $\mathrm{K}_{\mathrm{p}, 1000}$ for this reaction will be:
i) 4.4×10^{-9}
ii) 1.0×10^{-14}
iii) 2.3×10^{8}
iv) 9.9×10^{13}
v) 8.8×10^{835}
26) [$\mathbf{3}$ marks total] A concentration cell uses a standard hydrogen electrode (SHE) for one half cell. The other half-cell also uses $\mathrm{H}_{2}(\mathrm{~g})$ at 1 bar pressure, but the hydrogen ions in solution come from a weak acid. The cell so constructed produces 0.245 V .
a) [0.5 marks] The SHE is the (circle one): ANODE CATHODE
b) [0.5 marks] The process occurring at the SHE is (circle one):

OXIDATION

REDUCTION
c) [2 marks] Determine the pH of the buffered solution.
27) [2 marks] Determine the equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ for the following reaction at $25^{\circ} \mathrm{C}$.
$\mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \longrightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq})$
Given the standard reduction potentials: $\mathrm{Pb}^{2+} / \mathrm{Pb}=-0.125 \mathrm{~V}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}=+0.337 \mathrm{~V}$
a) 2.41×10^{-16}
b) 6.80×10^{-8}
c) 1.65×10^{-7}
d) 1.46×10^{7}
e) 4.15×10^{15}
28) [2 marks] Given the reaction:
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Ni}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Al}^{3+}(\mathrm{Aq})+3 \mathrm{Ni}(\mathrm{s}) \quad \varepsilon^{\circ}=+1.4100 \mathrm{~V}$
What would be the voltage if $\left[\mathrm{Ni}^{2+}\right]=0.020 \mathrm{M}$ and $\left[\mathrm{Al}^{3+}\right]=3.60 \mathrm{M}$?
a) 1.3880 V
b) 1.4322 V
c) 1.4712 V
d) 1.3488 V
e) 1.3182 V
29) [2 marks] A copper electrode weighs 35.42 g before electrolysis (of a CuSO_{4} solution) and 36.69 g after. The electrolysis was performed using a current of 3.50 amperes. How long did the electrolysis take?
a) 9.2 s
b) 275 s
c) 551 s
d) 1102 s
e) $1.35 \times 10^{4} \mathrm{~s}$
30) [2 marks] Given the reaction:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \varepsilon^{\circ}=1.092 \mathrm{~V}$
What is $\Delta \mathrm{G}^{\circ}$?
a) -2108 kJ
b) -211 kJ
c) -105 kJ
d) 211 kJ
e) 2108 kJ
31) [1 mark] The normal boiling point of a liquid:
a) Is the temperature at which the liquid and vapour are in equilibrium
b) Varies with the atmospheric pressure
c) Is the temperature at which the vapour pressure of the liquid is 1 atm
d) Is the temperature at which the vapour pressure of the liquid equals the external pressure
e) Is directly proportional to the molar mass of the liquid.
32) [2 marks] At $35^{\circ} \mathrm{C}$, the vapour pressure of CS_{2} is 512 mmHg , and of acetone, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$, is 344 mmHg . It is known that the acetone- CS_{2} intermolecular forces are weaker than the acetone-acetone or $\mathrm{CS}_{2}-\mathrm{CS}_{2}$ intermolecular forces. Given this information, you would expect that:
a) A mixture of 100.0 mL of acetone and 100.0 mL of CS_{2} has a volume of 200.0 mL .
b) A mixture of 100.0 mL of acetone and 100.0 mL of CS_{2} has a volume less than 200.0 mL .
c) When acetone and CS_{2} are mixed at $35^{\circ} \mathrm{C}$ heat is absorbed.
d) When acetone and CS_{2} are mixed at $35^{\circ} \mathrm{C}$ heat is evolved.
e) The vapour pressure above the solution would be lower than predicted.
33) [$\mathbf{3}$ marks] The primary constituent of lemon oil is the hydrocarbon, limonene, that is $88.16 \% \mathrm{C}$ and $11.84 \% \mathrm{H}$. A solution of 8.362 g of limonene in 50.00 g of benzene freezes at $2.37^{\circ} \mathrm{C}$. Pure benzene freezes at $5.5^{\circ} \mathrm{C}$. The freezing point depression constant for benzene is $5.12^{\circ} \mathrm{C} \mathrm{kg} / \mathrm{mol}$. Determine the molecular formula of limonene.
34) [$\mathbf{5}$ marks total] A certain compound has a normal melting point of $41^{\circ} \mathrm{C}$ and a normal boiling point of $123^{\circ} \mathrm{C}$. The triple point is at $39^{\circ} \mathrm{C}$ and 85 mmHg .
a) [3 marks] Sketch the phase diagram for this substance. Label all regions, lines and points appropriately.
b) [1 mark] Does the solid phase of this substance have a density greater or less than that of the liquid phase? How do you know? (No marks for guessing. ©)
c) [1 mark] Describe what happens when a sample of this substance at 2 atm and a temperature of $20^{\circ} \mathrm{C}$ is heated at constant pressure to a temperature of $50^{\circ} \mathrm{C}$.

