

CHEMISTRY 1210 Final Exam April 17, 2014

Time: 3 hours

Name:	ANSWERS	Student #:	
-------	---------	------------	--

Instructions:

Answer all questions on the exam paper.

Circle correct answers for multiple choice questions.

Show all work for non-multiple choice problems.

The left hand pages may be used for rough work; these pages will not be graded.

A formula sheet and periodic table are provided; no other materials may be used.

Work independently. Cheating will not be tolerated.

This exam should have 34 questions.

Unless otherwise specified you may assume the temperature is 25°C

Page	Mark	Maximum
2		5
3		6
4		-5
5		5
6		6.5
7		4
8		5
9		7.5
10		7
11		6
12		7
13		6
14		8
15		6
16		5
Total		89

1) [5 marks total] The following oxidation-reduction reaction occurs in basic solution:

$$P_4 + ClO_3^{-1} \longrightarrow PO_4^{3-} + Cl^{1-}$$

a) [4 marks] Balance the reaction.

$$\frac{(164120 + P_4 \rightarrow 4P0_4^{3-} + 32H^{+} + 20e^{-}) \times 3}{(6H^{+} + 6e^{+} + C10_3^{-} \rightarrow C1^{-} + 3420) \times 10}$$

$$\frac{484120 + 3P_4 + 664I^{+} + 10C0_3^{-} \rightarrow 12P0_4^{3-} + 96H^{+} + 10CI^{-} + 3040}{36}$$

$$18 + 10C10_3^{-} \rightarrow 12P0_4^{3-} + 364I^{+} + 10CI^{-}$$

$$3P_4 + 10C10_3^{-} + 360H^{-} \rightarrow 12P0_4^{3-} + 10C1^{-} + 184120$$

$$3P_4 + 10C10_3^{-} + 360H^{-} \rightarrow 12P0_4^{3-} + 10C1^{-} + 184120$$

b) [1 mark] Which species is the reducing agent?

2) [3 marks total] A 25.00-mL sample of a solution of Mo³⁺ solution was reacted with 0.0600 N KMnO₄:

$$MnO_4^{-1}(aq) + Mo^{3+}(aq) \longrightarrow Mn^{2+} + MoO_2^{2+}(aq)$$

a) [1 mark] If the Mo³⁺ in the reaction came from MoCl₃ (molar mass 202.3 grams), what is the equivalent mass of the MoCl₃?

b) [2 marks] The 25.00 mL sample of Mo³⁺ solution required 15.00 mL of the KMnO₄ solution for complete reaction. Determine the *molarity* of the Mo³⁺ in the solution.

3) [1 mark] The activation energy for the forward direction of a reaction is 50 kJ and for the reverse direction is 30 kJ. The ΔH for the overall reaction is:

- c) -80 kJ
- d) 80 kJ
- e) There is not enough information to answer this question.
- 4) [2 marks] The uncoiling of DNA is a first order process with an activation energy of about 420 kJ/mol. At 50°C the half-life for uncoiling is estimated to be 2 minutes. What is the half-life at a normal body temperature of 37°C?

a)
$$2.8 \times 10^{-3} \text{ min}$$

b) 1.4 min
c) 2 min
d) 2.85 min
e) 1411 min $n = \frac{t}{2} = \frac{420,000}{8,3144621} \left(\frac{50-37}{323,15\times3/0,15}\right)$

5) [2 marks] A reaction has a rate constant $k = 1.25 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$. If the initial concentration of the reactant is 0.0750 M, what concentration remains after 10.0 minutes?

(a) 0 M
b) 0.0696 M
c) 0.0738 M
d) 0.0749 M
e) 0.150 M

(A)
$$t = (A)_0 - kt$$

 $= 0.075 - 1.25 \times 0^{-10} \frac{M}{5} \times 600 \text{ S}$

6) [3 marks] The rate of the reaction:

$$3I^{-1} + S_2O_8^{-2} \longrightarrow I_3^{-1} + 2SO_4^{-2}$$

was studied using the iodine clock technique and the following data were obtained (t is the time the reaction took):

Run	$[I^{1}]_{o}(M)$	$[S_2O_8^{2-}]_0(M)$	<i>t</i> (s)
1	0.0400	0.0400	88.0
2	0.0800	0.0400	44.0
3	0.0800	0.0800	22.1

- a) The order of this reaction with respect to $S_2O_8^{2-}$ is:
 - i) 0
 - <u>ii) ½</u>
 - in) 2
 - iv) 2
 - v) 3
- b) The overall order of this reaction is:
 - i) 0
 - ii) ½
 - iii) 1
 - $(iv)^2$
 - v) 3
- c) If a run is made with $[I^{1-}]_0 = 0.120$ M and $[S_2O_8^{2-}]_0 = 0.0400$, you would expect the reaction to complete in approximately:
 - (i) 29 s
 - ii) 33 s
 - iii) 44 s
 - iv) 66 s
 - v) 88 s

7) [5 marks total] The Raschig reaction produces aqueous hydrazine, N₂H₄(aq), from NH₃(aq) and OCI⁻¹(aq) in basic, aqueous solution. A proposed mechanism is:

Step 1 (fast):
$$NH_3(aq) + OCl^{-1}(aq) \xrightarrow{k_1} NH_2Cl(aq) + OH^{-1}(aq)$$

Step 2 (slow):
$$NH_2Cl(aq) + NH_3(aq) \xrightarrow{k_2} N_2H_5^{+1}(aq) + Cl^{-1}(aq)$$

Step 3 (fast):
$$N_2H_5^{+1}(aq) + OH^{-1} \xrightarrow{k_3} N_2H_4(aq) + H_2O(l)$$

a) [3 marks] Determine the rate law based on this reaction mechanism, show all your work clearly.

- b) [1 mark] The following substances are intermediates: NH21, OH, N2H5
- c) [1 mark] This reaction mechanism involves a catalyst (circle one): YES (NO

8) [2 marks] Find K_p for the following reaction at 25°C:

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

$$K_c = 2.4 \times 10^{-3}$$
 at 25°C

a)
$$3.9 \times 10^{-10}$$

b)
$$5.6 \times 10^{-8}$$

$$k_7 = 2.4 \times 10^{-3} (0.083... \times 298.15)^{-2}$$

= 3.9×10⁻⁶

(c)
$$3.9 \times 10^{-6}$$

d) 5.6×10^{-4}

9) [2.5 marks total] For the equilibrium mixture at 200°C:

$$NH_4HS(s) = NH_3(g) + H_2S(g) \quad \Delta H > 0$$

Indicate if the partial pressure of NH₃ will increase, decrease or remain the same when the following changes are made:

(Circle your choice:

Add some Ne	I D (NC)
Add some H ₂ S	I D NC
Add some NH4HS	I D (NC)
Increase the temperature	I D NC
Double the volume of the container (at constant T)	I D (NC)

10) [2 marks] Given the following equilibria:

$$\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) = NO(g)$$
 $K_c = 4.8 \times 10^{-10}$
 $2NO_2(g) = 2NO(g) + O_2(g)$ $K_c = 1.1 \times 10^{-5}$

K_c for the equilibrium:

$$2NO_2(g) = N_2(g) + 2O_2(g)$$

will be:

d)
$$2.3 \times 10^4$$

$$\frac{i.1 \times 10^{-5}}{(4.8 \times 10^{-10})^2} = 4.8 \times 10^{+13}$$

c)
$$2.1 \times 10^{-14}$$

d) 2.3×10^4

d)
$$2.3 \times 10^{4}$$

e) 4.8×10^{13}

11) [2 marks] At a given temperature, $K_c = 3.24$ for the reaction:

$$H_2(g) \ + \ \mathrm{CO}_2(g) \ \Longrightarrow \ H_2\mathrm{O}(g) \ + \ \mathrm{CO}(g)$$

If 0.800 mol of both H₂ and CO₂ are placed in a 1.00 L container at this temperature, when the system comes to equilibrium the concentration of CO(g) will be:

12) [1 mark] For the reaction:

In mark] For the reaction:
$$2.8 \times = 1.44$$

$$I_2(g) + Br_2(g) \implies 2IBr(g) K_p = 280$$

$$\times = 0.5/4$$

 $Q = \frac{400}{10 \times 5} = 8$

If a container is filled with these gases, such that $P(I_2) = 10.0$ bar, $P(Br_2) = 5.0$ bar, and P(IBr) = 20.0 bar, in which direction will the reaction proceed?

- a) The reaction proceeds to the left.
 - b)) The reaction proceeds to the right.
 - c) The reaction is at equilibrium.
 - d) The reaction volume is required in order to answer this question.
 - e) The temperature is required in order to answer this question.

13) [1 mark] Choose the correct statement when the reaction

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

is at equilibrium:

- a) The rate constant for the forward reaction is equal to the rate constant for the reverse reaction.
- (b) The rate for the forward reaction is equal to the rate for the reverse reaction.
 - c) The concentrations of all reactants and products are equal.
 - d) Increasing the volume of the reaction container will increase the yield of ammonia.

7

e) The equilibrium expression for the reaction is $K_c = \frac{[N_2][H_2]^3}{[NH_2]^2}$

- 14) [2 marks] An indicator (pK_a = 5.0) changes colour from yellow to blue. It last appears yellow when $[Ind^{-1}]/[HInd] = 0.04$ and appears completely blue when $[Ind^{-1}]/[HInd] = 4$.
 - a) Calculate the pH range over which this indicator changes colour and place those pH values in the appropriate blanks below.

pH range: 3/6 (yellow) to 5/6 (blue)

$$10^{-5} = [HT](0.04)$$
 $10^{-5} = [HT](4)$
 $\Rightarrow [HT] = 2.5 \times 10^{-4}$ $\Rightarrow [HT]_{e} = 2.5 \times 10^{6}$
 $\Rightarrow PH = 3.6$ $\Rightarrow PH = 5.6$

b) Would this be a suitable indicator to use for the titration of NH₃ with HCl? (Circle your choice.)

15) [1 mark] In the equilibrium system

$$NH_3(aq) + H_2O(1) = NH_2^{-1} + H_3O^+(aq)$$

Bronsted-Lowry theory would designate:

- a) NH₃ and H₂O as the bases.
- b) H₂O and OH¹ as a conjugate pair.
- c) NH_2^{1-} and H_3O^+ as the acids.
- d) NH₂¹- and H₂O as a conjugate pair.
- e) NH₃ as amphiprotic.
- 16) [2 marks] A 10.0 mL sample of a 0.125 M solution of an unknown monoprotic acid has a pH = 2.95. What is its ionization constant, K_a ?

- 17) [3 marks] Methylamine, CH_3NH_2 , has a $K_b = 3.2 \times 10^{-5}$. What is its percent ionization in 1.0 and 0.1 M solutions, respectively?
 - a) 0.018% and 0.056%b) 0.032% and 0.0032%
 - c) 0.56% and 1.8%
 - (d) 0.56% in both e) 0.32% in both

٠	B+	420	=B++	rOH-	X 2	3.2×10-8
ℓ	l	5	U	\mathcal{O}	12	
1	~×	ζ	P-X	+X	<i>/</i> ~ ,	7 - 10 11

- 18) [2.5 marks] Match the descriptions given below with one of the mixtures described in questions (a) (e):
 - I A solution with a pH less than 7 that is not a buffer
 - II A buffer solution with a pH between 4 and 7
 - III A solution with a pH of 7
 - IV A buffer solution with a pH between 7 and 10
 - V A solution with a pH greater than 7 that is not a buffer
 - a) A mixture of 1 mole NaOH and 1 mole NaCl in enough water to make 1.0 L
 - b) A mixture of 1 mole NaCl and 1 mole CaCl₂ in enough water to make 1.0 L
 - c) A mixture of 1 mole NaF and 0.5 mole HF in enough water to make 1.0 L
 - d) A mixture of $50.0 \text{ mL} \ 0.10 \text{ M} \ \text{HCl}$ with $25.0 \text{ mL} \ 0.10 \ \text{M} \ \text{NH}_3$
 - e) A mixture of 25.0 mL 0.10 M HCl with 50.0 mL 0.10 M NH $_3$
- 19) [2 marks] What mass of sodium acetate (molar mass 82 g) should be dissolved in 200.0 mL of 0.20 M acetic acid to form a buffer of pH = 5.0? K_a for acetic acid is 1.8 x 10⁻⁵.

9

$$HA = H^{\dagger} + A^{-}$$

$$i \quad 0.2 \quad 0 \quad b$$

$$C \rightarrow X \quad + \lambda + X$$

$$\frac{1}{(0.7 - 1 \times 10^{-5})} = 1.8$$

0.359972 moles x 0.21 x 82g

20) [3 marks] What is the pH at the equivalence point for the titration of 0.10 M benzoic acid by 0.10 M sodium hydroxide? (K_a for benzoic acid is 6.3 x 10⁻⁵)

$$\frac{-0.05 - 0.08}{0.05} + 0.08$$

$$\frac{x^{2}}{0.05} = \frac{1 \times 10^{-19}}{6.3 \times 10^{-1}}$$

$$\frac{A}{0.05} + 10.08$$

$$= 0.05 + 0.08$$

$$\frac{X}{0.05} = \frac{1 \times 10^{-19}}{6.3 \times 10^{-1}}$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.05 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

$$= 0.08 + 0.08$$

21) [2 marks] How many moles of SrF₂ will dissolve in 1 L of 0.10 M Sr(NO₃)₂ if K_{sp} for SrF₂ is 7.9×10^{-10} ?

22) [2 marks] A solution is 0.120 M in Pb²⁺. If the K_{sp} for PbCrO₄ = 1.8 x 10⁻¹⁴. In order to precipitate 99.9% of all the Pb²⁺ present, the [CrO₄²⁻] must be:

a)
$$1.8 \times 10^{-17}$$

b) 1.8×10^{-14}
c) 1.5×10^{-13}
d) 1.5×10^{-10}
e) 1.3×10^{-7}
(1, 2×10^{-4}) [CrO₄²]_e = 1.8×10^{-10}
=) 1.3×10^{-7}

23) [6 marks total] Given the reaction:

$$2H_2O_2(aq) \,\to\, 2H_2O(l) \,+\, O_2(g)$$

$$\Delta H^{o}_{298} = -189.32 \text{ kJ}$$

a) [2 marks] Estimate the bond dissociation energy for the O-O single bond. The bond energy for the O₂ molecule is 498.3 kJ/mol, and the enthalpies of vaporization of H₂O₂(aq) and H₂O(l) are approximately equal.

$$2420_{2} \rightarrow 2420 + 0_{2}$$

$$2420_{2}(g) \rightarrow 2420_{2}(a_{1}) \quad \Delta H_{0} = 2420_{2}$$

$$2420(e) \rightarrow 24420(g) \quad \Delta H = 0 \quad 2x - 498.3 = -189.32$$

$$2420(e) \rightarrow 24420(g) \quad \Delta H = 0 \quad 2x = 308.98$$

$$2x - 498.3 = -189.33$$

$$2x = 308.98$$

$$2H-0-0-H \longrightarrow 2H-0-H + 0=0$$

 $40-H - 40-H - 48.3$
 $20-0 2x$

b) [1 mark] Give two reasons why your answer above is an estimate and not an accurate calculation of the bond dissociation energy.

c) [3 marks] One litre of a solution initially 0.0100 M in H₂O₂ and at 25.000°C is reacted. If all the heat produced in the reaction is retained in the solution, what would be the final temperature? Assume the specific heat capacity of the solution to be 4.184 J g⁻¹K⁻¹, and that the density of the solution is 1.00 g/mL.

24) [2 marks] Given the reaction:

$$C_4H_8(l) + 6O_2(g) \longrightarrow 4CO_2(g) + 4H_2O(l) \Delta H^o = -2696.9 \text{ kJ}$$

and that the molar enthalpies of formation of $CO_2(g)$ and $H_2O(l)$ are -393.5 kJ and -285.8 kJ respectively, the molar enthalpy of formation of butane ($C_4H_8(l)$) is:

- a) +2017 kJ/mol b) 20.3 kJ/mol
 - c) -107.6 kJ/mol
 - d) -2017 kJ/mol
 - e) +20.3 kJ/mol

25) [8 marks total] For the following system:

$$(NH_4)_2SO_4(s)$$
 = 2NH₃(g) + H₂O(g) + SO₃(g)
 $\Delta H^{\circ}_{298} = +449.6 \text{ kJ}$
 $\Delta S^{\circ}_{298} = +609.62 \text{ J/mol K}$

- a) $\Delta G^{\circ}_{298} = 267.9 \text{ kJ}$
 - i) [2 marks] $K_{p,298}$ for this reaction is:

(1)
$$1.0 \times 10^{-4696}$$

(2) 1.1×10^{-47}
(3) 2.0×10^{-5}
(4) 0.90
(5) 9.1×10^{46}
 $267900 = -8,3144621 \times 298 \times /n \text{ Rep}$
 $\Rightarrow \text{ Rep} = 1,1 \times 10^{-47}$

ii) [2 marks] Determine the value of ΔG_{298} when $P(NH_3) = 0.0010$ bar, $P(H_2O) = 0.0020$ bar and $P(SO_3) = 0.0020$ bar.

$$Q = (0.001)^{2} (0.002) (0.002)$$

$$= 4 \times 10^{-12}$$

iii) [1 mark] Under the conditions in part (c) the forward reaction is: (circle one)

spontaneous

b) [1 mark] At what temperature will this reaction be at equilibrium under standard conditions?

c) [2 marks] K_{p,1000} for this reaction will be:

i)
$$4.4 \times 10^{-9}$$

ii) 1.0×10^{-14}
iii) 2.3×10^{8}
iv) 9.9×10^{13}
v) 8.8×10^{835}

$$= -8.3144621 \times 1000 \times 1000$$

$$= -8.3144621 \times 1000 \times 1000$$

- 26) [3 marks total] A concentration cell uses a standard hydrogen electrode (SHE) for one half cell. The other half-cell also uses H₂(g) at 1 bar pressure, but the hydrogen ions in solution come from a weak acid. The cell so constructed produces 0.245 V.
 - a) [0.5 marks] The SHE is the (circle one): ANODE CATHODE
 - b) [0.5 marks] The process occurring at the SHE is (circle one):

OXIDATION

REDUCTION

c) [2 marks] Determine the pH of the buffered solution.

$$2H^{+}(IM) + 2e^{-} = 4h_{2}$$

 $+h_{2}(IM) = 2H^{+}(XM) + 2e^{-}$ $PH = 4.14$
 $Q = X^{2} = X^{2}$
 $I^{2}(IM) = 0.059159 \log X^{2}$

$$0.245 = -0.059159 \log x^{2}$$

$$= 2 \times = [41t] = 7.22 \times 10^{-5}$$

27) [2 marks] Determine the equilibrium constant (K_c) for the following reaction at 25°C.

$$Pb^{2+}(aq) + Cu(s) \longrightarrow Pb(s) + Cu^{2+}(aq)$$

Given the standard reduction potentials: $Pb^{2+}/Pb = -0.125 \text{ V}$ and $Cu^{2+}/Cu = +0.337 \text{ V}$

$$\overline{\text{b}}$$
 6.80 x 10⁻⁸

c)
$$1.65 \times 10^{-7}$$

d)
$$1.46 \times 10^7$$

e)
$$4.15 \times 10^{15}$$

28) [2 marks] Given the reaction:

$$2Al(s) + 3Ni^{2+}(aq) \longrightarrow 2Al^{3+}(Aq) + 3Ni(s)$$

$$\epsilon^{\circ} = +1.4100 \text{ V}$$

What would be the voltage if $[Ni^{2+}] = 0.020 \text{ M}$ and $[Al^{3+}] = 3.60 \text{ M}$?

$$Q = \frac{3.6^2}{(0.02)^3} = 1.62 \times 10^{16}$$

29) [2 marks] A copper electrode weighs 35.42 g before electrolysis (of a CuSO₄ solution) and 36.69 g after. The electrolysis was performed using a current of 3.50 amperes. How long did the electrolysis take?

e)
$$1.35 \times 10^4 \text{ s}$$

30) [2 marks] Given the reaction:

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

$$\varepsilon^{\circ} = 1.092 \text{ V}$$

What is ΔG° ?

31) [1 mark] The normal boiling point of a liquid:

a) Is the temperature at which the liquid and vapour are in equilibrium

b) Varies with the atmospheric pressure

c) As the temperature at which the vapour pressure of the liquid is 1 atm

d) Is the temperature at which the vapour pressure of the liquid equals the external pressure

e) Is directly proportional to the molar mass of the liquid.

- 32) [2 marks] At 35°C, the vapour pressure of CS₂ is 512 mmHg, and of acetone, CH₃COCH₃, is 344 mmHg. It is known that the acetone-CS₂ intermolecular forces are weaker than the acetone-acetone or CS2-CS2 intermolecular forces. Given this information, you would expect that:
 - a) A mixture of 100.0 mL of acetone and 100.0 mL of CS₂ has a volume of 200.0 mL.
 - b) A mixture of 100.0 mL of acetone and 100.0 mL of CS₂ has a volume less than $\approx 200.0 \text{ mL}.$
 - c) When acetone and CS₂ are mixed at 35°C heat is absorbed.
 - d) When acetone and CS₂ are mixed at 35°C heat is evolved.
 - e) The vapour pressure above the solution would be lower than predicted.
- 33) [3 marks] The primary constituent of lemon oil is the hydrocarbon, limonene, that is 88.16% C and 11.84% H. A solution of 8.362 g of limonene in 50.00 g of benzene freezes at 2.37°C. Pure benzene freezes at 5.5°C. The freezing point depression constant for benzene is 5.12°C kg/mol. Determine the molecular formula of limonene.

moles 1 monere = 0.6113 moles = 0.05 kg = 0.030

"moles 1 monere = $\frac{kg}{8.362g}$ = 273.6 g

0.030 moles mole

273.6 × 0.8816 × 1 mol = 20.1]... 273.6 × 0.1184 × 1 mol = 32.1]... 1,0079 g 15

- 34) [5 marks total] A certain compound has a normal melting point of 41°C and a normal boiling point of 123°C. The triple point is at 39°C and 85 mmHg.
 - a) [3 marks] Sketch the phase diagram for this substance. Label all regions, lines and points appropriately.

b) [1 mark] Does the solid phase of this substance have a density greater or less than that of the liquid phase? How do you know? (No marks for guessing. ③)

greater-exists at higher P.

c) [1 mark] Describe what happens when a sample of this substance at 2 atm and a temperature of 20°C is heated at constant pressure to a temperature of 50°C.

Solid warres to about 42°C Solid melts at about 42°C Iguid warres to 50°C