SURREY SUPPLEMENT: EQUILIBRIUM

- 1) Calculate K_c for the following reactions:
 - a) $CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$ $K_p = 3.9 \times 10^{-2} \text{ at } 1000 \text{ K } [3.2]$ b) $S_2(g) + C(s) \longrightarrow CS_2(g)$ $K_p = 28.5 \text{ at } 500 \text{ K}$ [28.5]
- 2) At 25°C, $K_p = 1.08$ for the equilibrium

 $H_2(g) + Cl_2(g) \implies 2HCl(g)$

The three gases, each at a partial pressure of 1.00 bar, are introduced into a reaction vessel.

- a) Determine the direction of the reaction. [to the right]
- b) Determine the equilibrium partial pressure of each gas. $[P_{H2} = P_{Cl2} = 0.987 \text{ bar}; P_{HCl} = 1.026 \text{ bar}]$
- 3) An important industrial source of ethanol is the reaction of steam with ethylene derived from oil:

 $C_2H_4(g) + H_2O(g) = C_2H_5OH(g)$ $\Delta H^{\circ}_{rxn} = -47.8 \text{ kJ}; K_c = 9 \times 10^3 \text{ at } 600 \text{ K}$

The reaction is catalyzed by H_3PO_4 .

- a) At equilibrium the pressure of ethanol is 200. bar and the pressure of steam is 400. bar.
 Calculate the equilibrium pressure of ethylene. [3 x 10⁻³ bar]
- b) Is the highest yield of ethanol obtained at high or low pressure? At high or low temperature? [high P, low T]
- c) Calculate K_c at 450 K. [3 x 10⁵]
- d) In NH₃ production, the yield is increased by condensing the NH₃ to a liquid and removing it. Would condensing the ethanol have the same effect in ethanol production? Explain. **[No]**
- 4) Aluminum can be produced at high temperatures from the decomposition of molten cryolite, Na₃AlF₆:

Na₃AlF₆(I) \implies 3Na(I) + Al(I) + 3F₂(g) K_c = 2 x 10⁻¹⁰⁴ at 1300 K

What is the concentration of F_2 in moles/L and molecules/cm³ at this temperature? [2.7 x 10⁻³⁵ M, or 16 molecules/km³]

5) How will the color of the equilibrium mixture:

 $Cr_2O_7^{2-}(aq) + 2OH^{-}(aq) \implies 2CrO_4^{2-}(aq) + H_2O(I)$

be affected by the addition of:

- a) sodium hydroxide. [rxn shifts right]
- b) hydrochloric acid. [rxn shifts left]

- 6) A mixture of 3.00 voumes of H₂ and 1.00 volumes of N₂ reacts at 344°C to form ammonia. The equilibrium mixture had a total pressure of 110. bar and contained 41.49% NH₃ by volume. Calculate K_p for the reaction. Assume that the gases behave ideally. **[1.15 x 10⁻³]**
- 7) At 100°C, K_p is 2.65 for the equilibrium

 $SO_2Cl_2(g) = SO_2(g) + Cl_2(g)$

If ΔH° = +93.1 kJ for the reaction, calculate K_p at 200°C. [1.5 x 10³]

8) For the equilibrium

 $2NO(g) + Cl_2(g) \implies 2NOCl(g)$

 $K_p = 2.72$ at 300°C, and ΔH° for the reaction is -75.6 kJ. Calculate K_p at 500°C. [0.045]

9) For the equilibrium

 $COCl_2(g) \implies CO(g) + Cl_2(g)$

 K_c is 7.6 x 10⁻⁴ at 400°C and 2.2 x 10⁻¹⁰ at 100°C. Calculate ΔH° for this reaction. [109 kJ/mol]

10) The equilibrium

 $PCl_5(g) \implies PCl_3(g) + Cl_2(g)$

was studied at each of the following temperatures, and the equilibrium total pressure recorded. At each temperature the initial pressure was 0.500 bar of PCI₅ (and no other reagent):

T (°C)	100	150	200	250	300
P _{total} (bar)	0.513	0.571	0.727	0.908	0.980

a) Is the reaction exothermic or endothermic? EXPLAIN. [endothermic]

b) Calculate ΔH° for this reaction. [92.6 kJ/mol]