1) Calculate K_{c} for the following reactions:
a) $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=3.9 \times 10^{-2}$ at 1000 K [3.2]
b) $\mathrm{S}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=28.5$ at 500 K
[28.5]
2) At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}=1.08$ for the equilibrium
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$
The three gases, each at a partial pressure of 1.00 bar, are introduced into a reaction vessel.
a) Determine the direction of the reaction. [to the right]
b) Determine the equilibrium partial pressure of each gas. $\left[\mathrm{P}_{\mathrm{H} 2}=\mathrm{P}_{\mathrm{Cl} 2}=0.987 \mathrm{bar} ; \mathrm{P}_{\mathrm{HCl}}=1.026 \mathrm{bar}\right]$
3) An important industrial source of ethanol is the reaction of steam with ethylene derived from oil:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-47.8 \mathrm{~kJ} ; \mathrm{K}_{\mathrm{c}}=9 \times 10^{3} \text { at } 600 \mathrm{~K}
$$

The reaction is catalyzed by $\mathrm{H}_{3} \mathrm{PO}_{4}$.
a) At equilibrium the pressure of ethanol is 200. bar and the pressure of steam is 400 . bar. Calculate the equilibrium pressure of ethylene. [3×10^{-3} bar]
b) Is the highest yield of ethanol obtained at high or low pressure? At high or low temperature? [high P, low T]
c) Calculate K_{c} at 450 K . [$\mathbf{3} \mathbf{x} \mathbf{1 0}{ }^{5}$]
d) In NH_{3} production, the yield is increased by condensing the NH_{3} to a liquid and removing it. Would condensing the ethanol have the same effect in ethanol production? Explain. [No]
4) Aluminum can be produced at high temperatures from the decomposition of molten cryolite, $\mathrm{Na}_{3} \mathrm{AlF}_{6}$:
$\mathrm{Na}_{3} \mathrm{AlF}_{6}(\mathrm{I}) \rightleftharpoons 3 \mathrm{Na}(\mathrm{I})+\mathrm{Al}(\mathrm{I})+3 \mathrm{~F}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=2 \times 10^{-104}$ at 1300 K
What is the concentration of F_{2} in moles $/ \mathrm{L}$ and molecules $/ \mathrm{cm}^{3}$ at this temperature? $\left[\mathbf{2 . 7} \times 1 \mathbf{1 0}^{-35} \mathbf{~ M}\right.$, or 16 molecules $/ \mathrm{km}^{3}$]
5) How will the color of the equilibrium mixture:

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{CrO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

be affected by the addition of:
a) sodium hydroxide. [rxn shifts right]
b) hydrochloric acid. [rxn shifts left]
6) A mixture of 3.00 voumes of H_{2} and 1.00 volumes of N_{2} reacts at $344^{\circ} \mathrm{C}$ to form ammonia. The equilibrium mixture had a total pressure of 110. bar and contained $41.49 \% \mathrm{NH}_{3}$ by volume. Calculate K_{p} for the reaction. Assume that the gases behave ideally. [1.15 x 10 ${ }^{-\mathbf{3}}$]
7) At $100^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}$ is 2.65 for the equilibrium
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

If $\Delta \mathrm{H}^{\circ}=+93.1 \mathrm{~kJ}$ for the reaction, calculate K_{p} at $200^{\circ} \mathrm{C}$. [1.5 x $10^{\mathbf{3}}$]
8) For the equilibrium
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g})$
$\mathrm{K}_{\mathrm{p}}=2.72$ at $300^{\circ} \mathrm{C}$, and $\Delta \mathrm{H}^{\circ}$ for the reaction is -75.6 kJ . Calculate K_{p} at $500^{\circ} \mathrm{C}$. [0.045]
9) For the equilibrium
$\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
K_{c} is 7.6×10^{-4} at $400^{\circ} \mathrm{C}$ and 2.2×10^{-10} at $100^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}^{\circ}$ for this reaction. [$109 \mathrm{~kJ} / \mathrm{mol}$]
10) The equilibrium
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
was studied at each of the following temperatures, and the equilibrium total pressure recorded. At each temperature the initial pressure was 0.500 bar of PCl_{5} (and no other reagent):

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	100	150	200	250	300
$\mathrm{P}_{\text {total }}($ bar $)$	0.513	0.571	0.727	0.908	0.980

a) Is the reaction exothermic or endothermic? EXPLAIN. [endothermic]
b) Calculate $\Delta \mathrm{H}^{\circ}$ for this reaction. [$92.6 \mathrm{~kJ} / \mathrm{mol}$]

