SURREY SUPPLEMENT: CHEMICAL KINETICS

1) The rate equation for the reaction

 $2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(g)$

is second order in NO(g) and first order in $H_2(g)$.

- a) Write an equation for the rate of appearance of $N_2(g)$. [rate = k[NO]²[H₂]]
- b) If concentrations are expressed in moles/litre, what units would the rate constant, k, have?
 [M⁻²s⁻¹]
- c) Write an equation for the rate of disappearance of NO(g). Would k in this equation have the same numerical value as k in the equation of part (a)? [rate = k[NO]²[H₂], NO.]
- 2) For a reaction in which A and B form C, the following data were obtained:

[A] (M)	[B] (M)	Rate of reaction (M/s)	
0.30	0.15	0.0007	
0.60	0.30	0.0028	
0.30	0.30	0.0014	

- a) What is the rate equation for the reaction? [rate = k[A][B]]
- b) What is the numerical value of the rate constant, k? [1.55 x 10⁻² L/mol·s]
- 3) For a reaction in which A and B form C, the following data were obtained:

[A] (M)	[B] (M)	Rate of reaction (M/s)
0.03	0.03	0.0003
0.06	0.06	0.0012
0.06	0.09	0.0027

- a) What is the rate equation for the reaction? [rate = k[B]²]
- b) What is the numerical value of the rate constant, k? [0.33 L/mol·s]
- 4) In the study of a first order kinetics reaction for the decomposition of A to form products the following data were obtained:

[A] (mol/L)	1.00	0.80	0.60	0.35	0.15
Time (s)	0	110	255	525	950

- a) Graphically determine the rate constant for this reaction. [2.0 x 10⁻³ s⁻¹]
- b) What is the half-life of this reaction? [350 s]

5) In the study of a second order kinetics reaction for the decomposition of A to form products the following data were obtained:

[A] (mol/L)	0.50	0.40	0.30	0.20	0.10
Time (min)	0	50	130	300	800

- a) Graphically determine the rate constant for this reaction. [0.010 L/mol·min]
- b) How long does it take for the [A] to decrease to half of its original value? [200 min]
- c) Would it take the same amount of time for [A] to subsequently decrease by another half? EXPLAIN. [No]
- 6) The single-step reaction

 $NO_2CI(g) + NO(g) \longrightarrow NO_2(g) + ONCI(g)$

is reversible; $E_{a,forward} = 28.9 \text{ kJ/mol}$ and $E_{a,reverse} = 41.8 \text{ kJ/mol}$. Draw a potential energy diagram for the reaction. Indicate $E_{a,forward}$, $E_{a,reverse}$ and ΔH on the diagram. [See end of problem set for answer.]

7) The reaction:

 $C_2H_5Cl(g) \longrightarrow C_2H_4(g) + HCl(g)$ is first order in C_2H_5Cl .

The rate constant is $3.5 \times 10^{-8} \text{ sec}^{-1}$ at 600 K and $1.6 \times 10^{-6} \text{ sec}^{-1}$ at 650 K. Calculate the energy of activation for this reaction. **[248 kJ/mol]**

- 8) For the reaction: $NO_2Cl(g) + NO(g) \longrightarrow NO_2(g) + ONCl(g)$, the pre-exponential factor A is 8.3 x 10⁸ and the energy of activation is 28.9 kJ/mol. The rate equation is first order in NO₂Cl and first order in NO. What is the rate constant, k, at 500 K? [7.9 x 10⁵ s⁻¹]
- 9) What is the energy of activation of a reaction that increases ten-fold in rate when the temperature is increased from 300 K to 310 K? [178 kJ/mol]
- 10) The following rate constants were obtained for a first order reaction:

T (°C)	0	20	40	60
K (s ⁻¹)	2.46 x 10 ⁻⁵	4.75 x 10 ⁻⁴	5.76 x 10 ⁻³	5.48 x 10 ⁻²

- a) Graphically determine the energy of activation (E_a) for this reaction. [97.0 kJ/mol]
- b) What is the half-life of this reaction at 80°C? [1.7 seconds]

11) Rate constants for the reaction $N_2O_5(g) \longrightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ were determined at a series of temperatures. The data are given below.

Т (К)	298	308	318	328	338
K (s⁻¹)	3.46x10 ⁻⁵	13.5x10 ⁻⁵	49.8x10 ⁻⁵	150x10 ⁻⁵	487x10 ⁻⁵

Construct an Arrhenius plot and determine the energy of activation for the above reaction. [102.6 kJ/mol]

- 12) Write a rate equation, showing the dependence of rate on reactant concentrations, for of the following elementary reactions:
 - a) $CS_2 \xrightarrow{k} CS + S$
 - b) $CH_3Br + OH^- \xrightarrow{k} CH_3OH + Br^-$ [See end of problem set for answers.]
- 13) The thermal decomposition of nitryl chloride, NO₂Cl,

 $2NO_2Cl(g) \longrightarrow 2NO_2(g) + Cl_2(g) \rightarrow$

is thought to occur by the following mechanism:

NO₂Cl
$$\xrightarrow{K_1}$$
 NO₂ + Cl· (slow step)

NO₂Cl + Cl·
$$\xrightarrow{k_2}$$
 NO₂ + Cl₂ (fast step)

What rate law is predicted by this mechanism? [rate = k₁[NO₂Cl]]

14) The oxidation of nitric oxide by oxygen:

 $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$

may have the following mechanism:

NO + O₂
$$\xrightarrow{k_1}$$
 NO₃ (fast)

 $NO_3 + NO \xrightarrow{k_3} 2NO_2$ (slow)

- a) Derive the rate law from this mechanism. $[rate = \frac{k_1k_3}{k_2}[NO]^2[O_2]]$
- b) What will $k_{observed}$ be in terms of the rate constants in the elementary steps? $[k_{obs} = \frac{k_1 k_3}{k_2}]$

15) Nitramide, O₂NNH₂, decomposes slowly in aqueous solution according to the equation:

$$O_2 NNH_2 \longrightarrow N_2 O + H_2 O$$

The experimental rate law is $rate = \frac{k[O_2NNH_2]}{[H_3O^+]}$.

Which of the following mechanisms seems appropriate?

a)
$$O_2 NNH_2 \xrightarrow{k_1} N_2 O + H_2 O$$

b)
$$O_2 NNH_2 + H_3 O^+ = \frac{k_1}{k_2} O_2 NNH_3^+ + H_2 O$$
 (fast)

$$O_2 NNH_3^+ \xrightarrow{k_3} N_2 O + H_3 O^+$$
 (slow)

c)
$$O_2 NNH_2 + H_2 O \xrightarrow{k_1} O_2 NNH^2 + H_3 O^+$$
 (fast)

$$O_2 NNH^- \xrightarrow{k_3} N_2 O + OH^-$$
 (slow)
 $H_3 O^+ + OH^- \xrightarrow{k_4} 2H_2 O$ (fast)

[Mechanism (c), assuming that the [H₂O] is constant and gets incorporated into a rate constant.]

16) The catalytic destruction of ozone occurs via a two-step mechanism, where X can be any of several species:

$$X + O_3 \xrightarrow{k_1} XO + O_2 \qquad (slow)$$
$$XO + O \xrightarrow{k_2} X + O_2 \qquad (fast)$$

- a) Write the overall reaction. $[0 + O_3 \longrightarrow 2O_2]$
- b) Write the rate law for each step. [See end of problem set for answers.]
- c) What are the roles of X and XO in the mechanism above? [X is a catalyst, XO is a reactive intermediate.]
- d) High-flying aircraft release NO into the stratosphere, which catalyzes this process. When O_3 and NO concentrations are 5×10^{12} molecules/cm³ and 1.0×10^9 molecules/cm³ respectively, what is the rate of O_3 depletion? The value of k for the rate-determining step is 6×10^{-15} cm³/molecules·s. [3.0 x 10⁷ molecules/s]

Answer to question 6:

Answers to question 12:

a) Rate = k[CS₂]

b) Rate = $k[CH_3Br][OH^-]$

Answers to question 16(b):

Rate = $k_1[X][O_3]$ (first step) Rate = $k_2[XO][O]$ (second step)