SURREY SUPPLEMENT: CHEMICAL KINETICS

1) The rate equation for the reaction
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
is second order in $\mathrm{NO}(\mathrm{g})$ and first order in $\mathrm{H}_{2}(\mathrm{~g})$.
a) Write an equation for the rate of appearance of $\mathrm{N}_{2}(\mathrm{~g})$. $\left[\right.$ rate $=\mathrm{k}\left[\mathrm{NO}^{2}\left[\mathrm{H}_{2}\right]\right]$
b) If concentrations are expressed in moles/litre, what units would the rate constant, k , have? [$\mathrm{M}^{-2} \mathrm{~s}^{-1}$]
c) Write an equation for the rate of disappearance of $\mathrm{NO}(\mathrm{g})$. Would k in this equation have the same numerical value as k in the equation of part (a)? [rate $\left.=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right], \mathrm{NO}.\right]$
2) For a reaction in which A and B form C, the following data were obtained:

$[A](M)$	$[B](M)$	Rate of reaction (M/s)
0.30	0.15	0.0007
0.60	0.30	0.0028
0.30	0.30	0.0014

a) What is the rate equation for the reaction? [rate $=k[A][B]]$
b) What is the numerical value of the rate constant, k ? [1.55 $\left.\times 10^{-2} \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}\right]$
3) For a reaction in which A and B form C, the following data were obtained:

$[A](M)$	$[B](M)$	Rate of reaction (M / s)
0.03	0.03	0.0003
0.06	0.06	0.0012
0.06	0.09	0.0027

a) What is the rate equation for the reaction? $\left[\right.$ rate $\left.=k[B]^{2}\right]$
b) What is the numerical value of the rate constant, k ? $[0.33 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}]$
4) In the study of a first order kinetics reaction for the decomposition of A to form products the following data were obtained:

$[\mathrm{A}](\mathrm{mol} / \mathrm{L})$	1.00	0.80	0.60	0.35	0.15
Time (s)	0	110	255	525	950

a) Graphically determine the rate constant for this reaction. [$2.0 \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{s}^{-\mathbf{1}}$]
b) What is the half-life of this reaction? [350 s]
5) In the study of a second order kinetics reaction for the decomposition of A to form products the following data were obtained:

$[\mathrm{A}](\mathrm{mol} / \mathrm{L})$	0.50	0.40	0.30	0.20	0.10
Time (min)	0	50	130	300	800

a) Graphically determine the rate constant for this reaction. [$0.010 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{min}$]
b) How long does it take for the [A] to decrease to half of its original value? [200 min]
c) Would it take the same amount of time for [A] to subsequently decrease by another half? EXPLAIN. [No]
6) The single-step reaction
$\mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g})+\mathrm{NO}(\mathrm{g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{ONCl}(\mathrm{g})$
is reversible; $\mathrm{E}_{\mathrm{a}, \text { forward }}=28.9 \mathrm{~kJ} / \mathrm{mol}$ and $\mathrm{E}_{\mathrm{a}, \text { reverse }}=41.8 \mathrm{~kJ} / \mathrm{mol}$. Draw a potential energy diagram for the reaction. Indicate $E_{a, f o r w a r d,} E_{a, \text { reverse }}$ and ΔH on the diagram. [See end of problem set for answer.]
7) The reaction:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$ is first order in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$.

The rate constant is $3.5 \times 10^{-8} \mathrm{sec}^{-1}$ at 600 K and $1.6 \times 10^{-6} \mathrm{sec}^{-1}$ at 650 K . Calculate the energy of activation for this reaction. [$248 \mathbf{k J} / \mathrm{mol}$]
8) For the reaction: $\mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g})+\mathrm{NO}(\mathrm{g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{ONCl}(\mathrm{g})$, the pre-exponential factor A is 8.3×10^{8} and the energy of activation is $28.9 \mathrm{~kJ} / \mathrm{mol}$. The rate equation is first order in $\mathrm{NO}_{2} \mathrm{Cl}$ and first order in NO. What is the rate constant, k, at 500 K ? [$7.9 \times 1 \mathbf{1 0}^{\mathbf{5}} \mathbf{s}^{\mathbf{- 1}}$]
9) What is the energy of activation of a reaction that increases ten-fold in rate when the temperature is increased from 300 K to 310 K ? [$178 \mathrm{~kJ} / \mathrm{mol}$]
10) The following rate constants were obtained for a first order reaction:

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	0	20	40	60
$\mathrm{~K}\left(\mathrm{~s}^{-1}\right)$	2.46×10^{-5}	4.75×10^{-4}	5.76×10^{-3}	5.48×10^{-2}

a) Graphically determine the energy of activation (E_{a}) for this reaction. [97.0 kJ/mol]
b) What is the half-life of this reaction at $80^{\circ} \mathrm{C}$? [1.7 seconds]
11) Rate constants for the reaction $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ were determined at a series of temperatures. The data are given below.

$\mathrm{T}(\mathrm{K})$	298	308	318	328	338
$\mathrm{~K}\left(\mathrm{~s}^{-1}\right)$	3.46×10^{-5}	13.5×10^{-5}	49.8×10^{-5}	150×10^{-5}	487×10^{-5}

Construct an Arrhenius plot and determine the energy of activation for the above reaction.

[102.6 kJ/mol]

12) Write a rate equation, showing the dependence of rate on reactant concentrations, for of the following elementary reactions:
a) $\mathrm{CS}_{2} \xrightarrow{\mathrm{k}} \mathrm{CS}+\mathrm{S}$
b) $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{OH}^{-} \xrightarrow{\mathrm{k}} \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Br}$ [See end of problem set for answers.]
13) The thermal decomposition of nitryl chloride, $\mathrm{NO}_{2} \mathrm{Cl}$,
$2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow$
is thought to occur by the following mechanism:
$\mathrm{NO}_{2} \mathrm{Cl} \xrightarrow{\mathrm{k}_{1}} \mathrm{NO}_{2}+\mathrm{Cl}$. (slow step)
$\mathrm{NO}_{2} \mathrm{Cl}+\mathrm{Cl} \cdot \xrightarrow{\mathrm{k}_{2}} \mathrm{NO}_{2}+\mathrm{Cl}_{2}$ (fast step)
What rate law is predicted by this mechanism? [rate $=\mathbf{k}_{1}\left[\mathrm{NO}_{2} \mathrm{Cl}\right]$]
14) The oxidation of nitric oxide by oxygen:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
may have the following mechanism:
$\mathrm{NO}+\mathrm{O}_{2} \underset{\mathrm{k}_{2}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{NO}_{3}$
$\mathrm{NO}_{3}+\mathrm{NO} \xrightarrow{\mathrm{k}_{3}} 2 \mathrm{NO}_{2} \quad$ (slow)
a) Derive the rate law from this mechanism. $\left[\right.$ rate $\left.=\frac{\boldsymbol{k}_{1} \boldsymbol{k}_{3}}{\boldsymbol{k}_{2}}[\boldsymbol{N O}]^{2}\left[\mathrm{O}_{2}\right]\right]$
b) What will $\mathrm{k}_{\text {observed }}$ be in terms of the rate constants in the elementary steps? [$\left.\boldsymbol{k}_{\boldsymbol{o b s}}=\frac{\boldsymbol{k}_{1} \boldsymbol{k}_{3}}{\boldsymbol{k}_{2}}\right]$
15) Nitramide, $\mathrm{O}_{2} \mathrm{NNH}_{2}$, decomposes slowly in aqueous solution according to the equation:
$\mathrm{O}_{2} \mathrm{NNH}_{2} \longrightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$

The experimental rate law is rate $=\frac{k\left[\mathrm{O}_{2} \mathrm{NNH}_{2}\right]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$.

Which of the following mechanisms seems appropriate?
a) $\mathrm{O}_{2} \mathrm{NNH}_{2} \xrightarrow{\mathrm{k}_{1}} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{O}_{2} \mathrm{NNH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+} \xlongequal[\mathrm{k}_{2}]{\mathrm{k}_{1}} \mathrm{O}_{2} \mathrm{NNH}_{3}{ }^{+}+\mathrm{H}_{2} \mathrm{O}$

(slow)
c) $\mathrm{O}_{2} \mathrm{NNH}_{2}+\mathrm{H}_{2} \mathrm{O} \xlongequal[\mathrm{k}_{2}]{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{O}_{2} \mathrm{NNH}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{O}_{2} \mathrm{NNH}^{-} \xrightarrow{\mathrm{k}_{3}} \mathrm{~N}_{2} \mathrm{O}+\mathrm{OH}^{-}$
(slow)
$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \xrightarrow{\mathrm{K}_{4}} 2 \mathrm{H}_{2} \mathrm{O}$
[Mechanism (c), assuming that the [$\mathrm{H}_{2} \mathrm{O}$] is constant and gets incorporated into a rate constant.]
16) The catalytic destruction of ozone occurs via a two-step mechanism, where X can be any of several species:

(slow)
$\mathrm{XO}+\mathrm{O} \xrightarrow{\mathrm{k}_{2}} \mathrm{X}+\mathrm{O}_{2}$
a) Write the overall reaction. $\left[\mathrm{O}+\mathrm{O}_{\mathbf{3}} \longrightarrow \mathrm{2O}_{2}\right.$]
b) Write the rate law for each step. [See end of problem set for answers.]
c) What are the roles of X and $X O$ in the mechanism above? [X is a catalyst, $X O$ is a reactive intermediate.]
d) High-flying aircraft release NO into the stratosphere, which catalyzes this process. When O_{3} and NO concentrations are 5×10^{12} molecules $/ \mathrm{cm}^{3}$ and 1.0×10^{9} molecules $/ \mathrm{cm}^{3}$ respectively, what is the rate of O_{3} depletion? The value of k for the rate-determining step is $6 \times 10^{-15} \mathrm{~cm}^{3} /$ molecules.s. [3.0×10^{7} molecules $/ \mathrm{s}$]

Answer to question 6:

Answers to question 12:
a) Rate $=k\left[\mathrm{CS}_{2}\right]$
b) Rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$

Answers to question 16(b):

Rate $=\mathrm{k}_{1}[\mathrm{X}]\left[\mathrm{O}_{3}\right]$ (first step)
Rate $=\mathrm{k}_{2}[\mathrm{XO}][\mathrm{O}]$ (second step)

