SURREY SUPPLEMENT: REDOX REACTIONS AND STOICHIOMETRY

- 1) Balance the following oxidation-reduction equations. All reactions occur in acidic solutions.
 - a) $Zn + NO_3^- \longrightarrow Zn^{2+} + NH_4^+$
 - b) $ReO_2 + Cl_2 \longrightarrow HReO_4 + Cl^-$
 - c) $HNO_2 + MnO_4^- \longrightarrow NO_3^- + Mn^{2+}$
 - d) $Cu + NO_3^- \longrightarrow Cu^{2+} + NO$
- 2) Balance the following oxidation-reduction equations. All reactions occur in basic solutions.
 - a) $S_2O_3^{2-} + OCl^{-} \longrightarrow SO_4^{2-} + Cl^{-}$
 - b) $NiO_2 + Fe \longrightarrow Ni(OH)_2 + Fe(OH)_3$
 - c) $SbH_3 + H_2O \longrightarrow Sb(OH)_4 + H_2$
 - d) $P_4 \longrightarrow PH_3 + HPO_3^{2-}$
- 3) Balance the following oxidation-reduction equations under the specific conditions noted:
 - a) $Pb + PbO_2 + SO_4^{2-} \longrightarrow PbSO_4$ (acidic solution)
 - b) $CrI_3 + CI_2 \longrightarrow CrO_4^{2^-} + IO_4^{-} + CI_5^{-}$ c) $XO_2^+ + YO^+ \longrightarrow X_2O_4^{3^-} + Y^- + Y_3O_7^{2^-}$ (basic solution)
 - (basic solution)
 - (acidic conditions)
 - d) $Z_2O_3 + X(CN)_6^{3-} \longrightarrow Z^- + O_2 + X^{3+} + NO_2 + CO_2$ e) $Sn^{4+} + X(CNO)_4^{2-} \longrightarrow Sn^{2+} + XO_2^{3+} + CO_3^{2-} + NO_2$ (basic conditions)
 - f) $C_7H_8 + MnO_4^- \longrightarrow C_7H_6O_2 + MnO_2 + Mn^{2+}$ (basic conditions)
- 4) Balance the following oxidation-reduction equation in basic conditions:

$$S_2O_3^{2-}(aq) + H_2O_2(aq) \longrightarrow S_3O_6^{2-}(aq) + SO_4^{2-}(aq) + H_2O(I)$$

Which substance is the oxidizing agent?

5) Iodine (I_2) reacts with thiosulfate ($S_2O_3^{2-}$) in acidic solution to form iodide (I^-) and tetrathionate $(S_4O_6^{2-})$. Calculate the volume in mL of 0.100 M $Na_2S_2O_3$ needed to react with 7.50 g of I_2 .

ANSWERS TO SURREY SUPPLEMENT PROBLEM SET No. 1: REDOX REACTIONS AND STOICHIOMETRY

- 1) (acidic solution balancing)
 - a) $4Zn + NO_3^- + 10H^+ \longrightarrow 4Zn^{2+} + NH_4^+ + 3H_2O$
 - b) $3Cl_2 + 2ReO_2 + 4H_2O \longrightarrow 6Cl^- + 2HReO_4 + 6H^+$
 - c) $5HNO_2 + 2MnO_4^- + H^+ \longrightarrow 5NO_3^- + 2Mn^{2+} + 3H_2O$
 - d) $3Cu + 2NO_3^- + 8H + \longrightarrow 3Cu^{2+} + 2NO + 4H_2O$
- 2) (basic solution balancing)
 - a) $4CIO^{-} + S_2O_3^{2-} + 2OH^{-} \longrightarrow 4CI^{-} + 2SO_4^{2-} + H_2O$
 - b) $2Fe + 3NiO_2 + 6H_2O \longrightarrow 2Fe(OH)_3 + 3Ni(OH)_2$
 - c) $SbH_3 + 3H_2O + OH^- \longrightarrow Sb(OH)_4^- + 3H_2$
 - d) $P_4 + 2H_2O + 4OH^- \longrightarrow 2PH_3 + 2HPO_3^{2-}$
- 3) (given conditions balancing)
 - a) (acidic) Pb + PbO₂ + 4H⁺ + 2SO₄²⁻ \longrightarrow 2PbSO₄ + 2H₂O
 - b) (basic) $640H^{-} + 27Cl_2 + 2Crl_3 \rightarrow 2CrO_4^{2-} + 6IO_4^{-} + 54Cl^{-} + 32H_2O$
 - c) (basic) $2XO_2^+ + 10YO^+ + 22OH^- \longrightarrow X_2O_4^{3-} + Y^- + 3Y_3O_7^{2-} + 11H_2O$ (One of many possible answers)
 - d) (acidic) $14Z_2O_3 + 2X(CN)_6^{3-} + 8H_2O \longrightarrow 2X^{3+} + 12NO_2 + 12CO_2 + O_2 + 28Z^{-} + 16H^+$ (One of many possible answers)
 - e) (basic) $25Sn^{4+} + 56OH^{-} + 2X(CNO)_4^{2-} \longrightarrow 25Sn^{2+} + 2XO_3^{3+} + 8CO_3^{2-} + 8NO + 28H_2O$
 - f) (basic) $2H_2O + 4MnO_4^- + 3C_7H_8$ \longrightarrow $3C_7H_6O_2 + 3Mn^{2+}MnO_2 + 10OH^-$ (One of many possible answers)
- 4) (balance reaction, identify oxidizing agent)

$$4H_2O_2 + 2S_2O_3^{2-} \longrightarrow S_3O_6^{2-} + SO_4^{2-} + 4H_2O$$

 H_2O_2 is the oxidizing agent.

5) (reaction of I_2 and $S_2O_3^{2-}$)

Balanced reaction: $I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$

moles of $I_2 = 7.50 \text{ g}/253.8 \text{ g/mol} = 2.955 \text{ x } 10^{-2} \text{ mol } I_2 = 29.55 \text{ mmol } I_2$

moles of $S_2O_3^{2-}$ needed = 2 x 2.955 x 10^{-2} = 5.910 x 10^{-2} = 59.10 mmol $S_2O_3^{2-}$ and volume of 0.100 M $Na_2S_2O_3$ needed = 591 mL