SURREY SUPPLEMENT: SOLUBILITY

- 1) A solution contains 1.0 x 10^{-4} M Cu⁺ and 2.0 x 10^{-3} M Pb²⁺.
 - a) If a source of I⁻ is added to this solution, will PbI₂ ($K_{sp} = 1.4 \times 10^{-8}$) or CuI ($K_{sp} = 5.3 \times 10^{-12}$) precipitate first? [Cul]
 - b) Specify the concentration of I⁻ necessary to begin precipitation of each compound in part (a).
 [Cu⁺ requires 5.3 x 10⁻⁸ M I⁻ and Pb²⁺ requires 2.65 x 10⁻³ M I⁻]
 - c) Calculate the % left in solution of the first ion to precipitate when the second ion just starts to precipitate. **[0.002% Cu⁺ remains when Pb²⁺ is just starts to precipitate.]**
- 2) You are to do a titration of 10.00 mL of 0.1000 M NaCl with 0.1000 M AgNO₃. The K_{sp} of AgCl = 1.8 x 10⁻¹⁰ and we will define the pCl scale as:

pCl = - log[Cl-]

(If you've studied acids and bases, this is the same idea as for the pH scale.)

- a) Calculate the pCl at the start of the titration. [1.0]
- b) Calculate the pCl after 9.00 mL of AgNO₃ solution have been added. [2.28]
- c) Calculate the pCl after 10.00 mL of AgNO $_3$ solution have been added. [4.87]
- d) Calculate the pCl after 11.00 mL of AgNO₃ solution have been added. [7.42]