SURREY SUPPLEMENT: THERMOCHEMISTRY

1) Given the following reaction:
$2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCN}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
a) Calculate $\Delta \mathrm{H}^{\circ}$ using the following enthalpies of formation:

Compound	$\Delta \mathrm{H}^{\circ} \mathrm{f}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{NH}_{3}(\mathrm{~g})$	$-46.19 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CH}_{4}(\mathrm{~g})$	$-74.86 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{HCN}(\mathrm{g})$	$+130.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	$-285.9 \mathrm{~kJ} / \mathrm{mol}$

[-1212.3 kJ]
b) Calculate ΔH° using the following bond energies. You will also need to know that ΔH° vap for water is $+44 \mathrm{~kJ} / \mathrm{mol}$.

Bond	Bond energy (kJ/mol)
$\mathrm{N}-\mathrm{H}$	389
$\mathrm{C}-\mathrm{H}$	414
$\mathrm{O}=\mathrm{O}$	494
$\mathrm{C} \equiv \mathrm{N}$	879
$\mathrm{O}-\mathrm{H}$	463

[-1278 kJ]
2) Given the thermochemical equation
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=+42.7 \mathrm{~kJ}$
a) Calculate $\Delta \mathrm{E}^{\circ}{ }_{298}$ for the above reaction. [$+35.3 \mathrm{~kJ} / \mathrm{mol}$]
b) Calculate $\Delta \mathrm{H}^{\circ}, 298$ for $\mathrm{NaN}_{3}(\mathrm{~s})$. Give your answer in $\mathrm{kJ} / \mathrm{mol}$. [-21.35 kJ/mol]
3) A 2.30 g sample of quinone, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$, was burned in excess oxygen in a bomb calorimeter. The calorimeter (specific heat capacity $3.27 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$) was immersed in 1000 g of water (specific heat capacity $4.184 \mathrm{j} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. The temperature of the calorimeter and contents increased from $19.22^{\circ} \mathrm{C}$ to $27.07^{\circ} \mathrm{C}$. What quantity of heat would be liberated by the combustion of one mole of quinone under these conditions? [-2747.6 kJ]
4) Given the following reactions:

$$
\begin{array}{ll}
\mathrm{OSCl}_{2}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{I}) & \Delta \mathrm{H}^{\circ}=+10.3 \mathrm{~kJ} \\
\mathrm{PCl}_{3}(\mathrm{I})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{OPCl}_{3}(\mathrm{I}) & \Delta \mathrm{H}^{\circ}=-325.1 \mathrm{~kJ} \\
\mathrm{P}(\mathrm{~s})+1.5 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{PCl}_{3}(\mathrm{I}) & \Delta \mathrm{H}^{\circ}=-306.7 \mathrm{~kJ} \\
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \Delta \mathrm{H}^{\circ}=-202.6 \mathrm{~kJ}
\end{array}
$$

Calculate $\Delta \mathrm{H}^{\circ}$ for the reaction:
$2 \mathrm{P}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})+5 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SCl}_{2}(\mathrm{I})+2 \mathrm{PPCl}_{3}(\mathrm{I})[-1081.6 \mathrm{~kJ}]$
5) The combustion of 1.000 g of cyclohexane, $\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})$, in a bomb calorimeter, evolves 46.86 kJ of heat at $25^{\circ} \mathrm{C}$. The products of combustion are carbon dioxide gas and liquid water. The molar mass of cylcohexane is 84.16 g .
a) Calculate $\Delta \mathrm{E}^{\circ}$ for the combustion of one mole of cyclohexane. [-3911.8 kJ]
b) Write the chemical equation for the combustion reaction and calculate ΔH° for the reaction. [-3919.2 kJ]
c) Calculate the enthalpy of formation of cylcohexane from your calculated value of $\Delta \mathrm{H}^{\circ}$ and the molar enthalpies of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ (available in your text and/or on line).
[-157.2 kJ/mol]
6) A balloonist is preparing to make a trip in a helium-filled balloon. The trip begins in the early morning when the temperature is $15^{\circ} \mathrm{C}$. By mid-afternoon, the temperature has increased to $30^{\circ} \mathrm{C}$. Assuming the pressure remains constant at 1.00 bar, for each mole of helium, calculate:
a) the initial and final volumes [$\mathbf{2 3 . 9 6} \mathrm{L}$ and $\mathbf{2 5 . 2 1} \mathrm{L}$]
b) the change in internal energy, $\Delta \mathrm{E}$ [Hint: Helium behaves like an ideal gas, so $\mathrm{E}=3 / 2 \mathrm{nRT}$] [187 J]
c) the work (w) done by the helium (in J) [-125 J]
d) the heat (q) transferred (in J) [312 J]
e) $\Delta \mathrm{H}$ for the process (in J) [312 J]
f) Explain the relationship between the answers to (d) and (e)

