SURREY SUPPLEMENT: THERMOCHEMISTRY

1) Given the following reaction:

 $2NH_3(g) + 2CH_4(g) + 3O_2(g) \longrightarrow 2HCN(g) + 6H_2O(I)$

a) Calculate ΔH° using the following enthalpies of formation:

Compound	ΔH° _f (kJ/mol)
NH₃(g)	-46.19 kJ/mol
CH₄(g)	-74.86 kJ/mol
HCN(g)	+130.5 kJ/mol
H ₂ O(I)	-285.9 kJ/mol
[-1212.3 kJ]	

b) Calculate ΔH° using the following bond energies. You will also need to know that ΔH°_{vap} for water is +44 kJ/mol.

Bond	Bond energy (kJ/mol)
N-H	389
C-H	414
0=0	494
C≡N	879
O-H	463
[-1278 kJ]	

2) Given the thermochemical equation

2NaN₃(s) → 2Na(s) + 3N₂(g) ΔH°=+42.7 kJ

- a) Calculate ΔE°_{298} for the above reaction. [+35.3 kJ/mol]
- b) Calculate $\Delta H^{\circ}_{f,298}$ for NaN₃(s). Give your answer in kJ/mol. [-21.35 kJ/mol]
- 3) A 2.30 g sample of quinone, C₆H₄O₂, was burned in excess oxygen in a bomb calorimeter. The calorimeter (specific heat capacity 3.27 kJ/°C) was immersed in 1000 g of water (specific heat capacity 4.184 j/g·°C). The temperature of the calorimeter and contents increased from 19.22°C to 27.07°C. What quantity of heat would be liberated by the combustion of one mole of quinone under these conditions? [-2747.6 kJ]

4) Given the following reactions:

$OSCI_2(I) + H_2O(I) \longrightarrow SO_2(g) + 2HCI(I)$	ΔH° = +10.3 kJ
$PCI_3(I) + \frac{1}{2}O_2(g) \longrightarrow OPCI_3(I)$	ΔH° = -325.1 kJ
P(s) + 1.5Cl₂(g) → PCl₃(l)	ΔH° = -306.7 kJ
$4HCI(g) + O_2(g) \longrightarrow 2CI_2(g) + 2H_2O(I)$	ΔH° = -202.6 kJ

Calculate ΔH° for the reaction:

2P(s) + 2SO₂(g) + 5Cl₂(g) > 2OSCl₂(l) + 2OPCl₃(l) [-1081.6 kJ]

- 5) The combustion of 1.000 g of cyclohexane, C₆H₁₂(I), in a bomb calorimeter, evolves 46.86 kJ of heat at 25°C. The products of combustion are carbon dioxide gas and liquid water. The molar mass of cylcohexane is 84.16 g.
 - a) Calculate ΔE° for the combustion of one mole of cyclohexane. [-3911.8 kJ]
 - b) Write the chemical equation for the combustion reaction and calculate ΔH° for the reaction. [-3919.2 kJ]
 - c) Calculate the enthalpy of formation of cylcohexane from your calculated value of ΔH° and the molar enthalpies of formation of CO₂(g) and H₂O(I) (available in your text and/or on line). [-157.2 kJ/mol]
- 6) A balloonist is preparing to make a trip in a helium-filled balloon. The trip begins in the early morning when the temperature is 15°C. By mid-afternoon, the temperature has increased to 30°C. Assuming the pressure remains constant at 1.00 bar, for each mole of helium, calculate:
 - a) the initial and final volumes [23.96 L and 25.21 L]
 - b) the change in internal energy, ΔE [Hint: Helium behaves like an ideal gas, so E = 3/2nRT] [187 J]
 - c) the work (w) done by the helium (in J) [-125 J]
 - d) the heat (q) transferred (in J) [312 J]
 - e) ΔH for the process (in J) [312 J]
 - f) Explain the relationship between the answers to (d) and (e)