SURREY SUPPLEMENT: THERMODYNAMICS

- 1) For oxygen difluoride, $OF_2(g)$, the Gibbs free energy of formation is +40.6 kJ/mol.
 - a) Is the preparation of $OF_2(g)$ from its elements at 25°C a spontaneous process? [No]
 - b) For ozone, $O_3(g)$, the Gibbs free energy of formation is +163.43 kJ/mol. Is it theoretically possible to prepare $OF_2(g)$ at 25°C by the reaction:

3F₂(g) + O₃(g) → 3OF₂(g) [Yes]

- The standard enthalpy of formation of CS₂(I) is +87.9 kJ/mol. The absolute molar entropy of C(graphite) is 5.69 J/mol-K, of S(rhombic) is 31.9 J/mol-K, and of CS₂(I) is 151.0 J/mol-K. Calculate the standard Gibbs free energy of formation of CS₂(I). [63.7 kJ/mol]
- 3) Look up the necessary data in the appendices of your textbook or online to determine the $K_{p,298}$ value for the reaction:

 $SO_2(g) + NO_2(g) \implies SO_3(g) + NO(g)$ [1.45 x 10⁶]

4) For the reaction:

 $NH_4CO_2NH_2(s) \implies 2NH_3(g) + CO_2(g)$

 ΔG°_{298} = +31.00 kJ and ΔH°_{298} = +159.95 kJ

- a) Calculate the value of K_p at 298 K [3.67 x 10⁻⁶]
- b) Calculate the pressure of NH₃ and CO₂ at equilibrium at 298 K [$P_{co2} = 9.7 \times 10^{-3}$ bar and $P_{NH3} = 1.94 \times 10^{-2}$ bar]
- c) Calculate the value of K_p at 500 K [7.8 x 10⁻⁵]
- d) Calculate the absolute molar entropy of NH₃ at 298 K given the following absolute molar entropies: CO₂(g) = 213.60 J/mol·K and NH₄CO₂NH₂(s) = 166.10 J/mol·K **[192.6 J/mol·K]**
- 5) Given the following standard electrode potentials and Gibbs free energies of formation at 298 K:

- a) Calculate \mathcal{E}° for the reaction: $Cu^{2+}(aq) + e^{-} = Cu^{+}(aq)$ [0.152 V]
- b) Calculate ΔG° and K_c at 298 K for the reaction: $2Cu^+(aq) = Cu^{2+}(aq) + Cu(s)$ [0.184 V]
- c) Given the K_{sp} of Cu(OH)₂ = 1.6 x 10⁻¹⁹, calculate $\Delta G^{\circ}_{f,298}$ for OH⁻(aq). [-156.9 kJ/mol]
- d) Using the Gibbs free energies of formation at 298 K for the OH⁻ and H⁺ ions along with the $\Delta G^{\circ}_{f,298}$ for H₂O(I) = -237 kJ/mol, calculate the K_w for water at 25°C. [9.1 x 10⁻¹⁵]

6) For the reaction:

 $Ag^{+}(aq) + I^{-}(aq) \longrightarrow AgI(s)$

 ϵ° = +0.951 V at 25°C and $K_{\rm 328}$ = 1.88 x 10^{14}

- a) Calculate ΔG° for the above reaction at 298 K [-91.8 kJ]
- b) Calculate ΔH° and ΔS° for this reaction at 298 K. Assume that ΔH° and ΔS° are independent of temperature. [ΔH° = -113.6 kJ and ΔS° = -73.3 J/K]
- c) Given that the Gibbs free energy of formation of $Ag^+(aq)$ at 298 K is +77.11 kJ/mol, calculate \mathcal{E}°_{298} for the half reaction: $Ag(s) + I^-(aq) \longrightarrow AgI(s) + e^-$ [0.152 V]