KWANTLEN UNIVERSITY COLLEGE CHEMISTRY 1110 R11 Spring 2004 Dr. Jennifer Wolf EXAM No. 1 Wednesday, February 18, 2004

Name: ______

Student Number_____

Instructions: Ensure that this exam contains all **eleven** questions. Read the exam carefully and judge your time accordingly. *All work must be shown to receive any credit.* If you need extra space, use the back of a preceding page and clearly indicate the question number. Rough work may also be done on the back of a preceding page. A periodic chart is supplied with this exam.

Maximum Score: 70 marks

POTENTIALLY USEFUL INFORMATION:	Question	Marks
Avogadro's Number: 6.0221 x 10 ²³	1	/5
PV = nRT	2	/6
Gas Constant: $R = 0.08206$ Latm mol ⁻¹ K ⁻¹	3	/6
1 atm = 760 mm Hg = 760 torr (exactly)	4	/6
$T(K) = T(^{\circ}C) + 273.15$	5	/4
$r_2/r_1 = t_1/t_2 = (MM_1/MM_2)^{1/2}$	6	/4
$\mathbf{P}_{\text{total}} = \mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3 \dots$	7	/6
$P_i = \chi_i P_{total}$	8	/5
$c = \lambda v$ $E = hv$	9	/6
$h = 6.6.26 \text{ x } 10^{-34} \text{ J s}$	10	/14
$c = 2.998 \text{ x } 10^8 \text{ m s}^{-1}$	11	/8

TOTAL

/70

Question 1 (5 marks)

A compound containing only Cl and O reacts with hydrogen gas to give 0.233 g HCl and 0.403 g $\rm H_2O$.

(a) Determine the empirical formula of the compound.

(b) In a separate experiment, HCl gas was found to effuse 2.24 times faster than a gas sample of the chlorine-oxygen compound. What is the molecular formula of the compound?

Question 2 (6 marks)

A 0.9157 g mixture of $CaBr_2$ and NaBr is dissolved in water and excess $AgNO_3$ is added to the solution to form AgBr precipitate. If the mass of the precipitate is 1.693 g, what is the percent by mass of NaBr in the original mixture?

[Molar masses: NaBr = 102.89 g/mol; CaBr₂ = 199.88 g/mol; AgBr = 187.8 g/mol]

 $CaBr_2 + 2 AgNO_3 \rightarrow Ca(NO_3)_2 + 2 AgBr(s)$

NaBr + AgNO₃ \rightarrow NaNO₃ + AgBr (s)

Question 3 (6 marks)

A 1.00-g sample of a metal **M** (that is known to form \mathbf{M}^{2+} ions) was added to 0.100 L of 0.500 M H₂SO₄ (excess acid). The remaining acid was titrated with 33.4 mL of 0.500 M NaOH. Determine **M**.

Reactions:

 $\mathbf{M} + \mathbf{H}_2 \mathbf{SO}_4 \rightarrow \mathbf{M} \mathbf{SO}_4 + \mathbf{H}_2$ $\mathbf{H}_2 \mathbf{SO}_4 + 2 \mathbf{N} \mathbf{a} \mathbf{O} \mathbf{H} \rightarrow \mathbf{N} \mathbf{a}_2 \mathbf{SO}_4 + 2 \mathbf{H}_2 \mathbf{O}$

Question 4 (6 marks)

Nitric oxide (NO) reacts with molecular oxygen as follows:

 $2 \text{ NO}(g) + O_2(g) \rightarrow 2 \text{ NO}_2(g)$

Initially, NO and O_2 are separated as shown below. When the valve is opened and the gases are allowed to mix, the reaction quickly goes to completion. The temperature remains constant at 25 °C.

Determine:

- (a) which gases are present at the end of the reaction
- (b) the partial pressures of each gas after the reaction
- (c) the total pressure in the system after the reaction

[Note: you can neglect the volume of the connecting tube.]

Question 5 (4 marks)

A ruby laser produces radiation of wavelength 633 nm in pulses whose durations are 1.00×10^{-9} s.

(a) What is the energy of of the radiation produced by the laser (the energy of one "photon")?

(b) If the laser produces 0.376 J of energy per pulse, how many photons are produced per pulse?

Question 6 (4 marks)

The energy levels in any one-electron species are given by the expression:

$$E_n = -2.179 \times 10^{-18} J Z^2/n^2$$

Calculate the frequency of the radiation emitted when an electron in a Li^{2+} ion falls from n = 4 to the ground state.

Question 7 (6 marks)

Indicate which of compounds 1-8 above would be examples of the following: (NOTE: A compound may be used more than once.)

Question 8 (5 marks)

Draw structures (showing **all hydrogens**) of each of the following molecules, and indicate which will show cis/trans isomerism (geometric isomerism):

a) 1,4-dibromocycloheptane

b) para-iodobenzaldehyde

c) 4-cyclopropyl-2-pentyne

d) ethyl 5-bromo-4-isopropylheptanoate

e) 3-ethyl-5-phenyl-1,3-octadiene

Question 9 (6 marks)

Give systematic names for each of the following:

Question 10 (14 marks): Give the major products or fill in the missing reagents for the following reactions:

Question 11 (8 marks)

Compound **A** has the formula C_4H_6 .

The following scheme show what happens when compound **A** reacts with various substances. Give structures for compounds **A-D**.

