KWANTLEN UNIVERSITY COLLEGE CHEMISTRY 1110 R11 Spring 2004 Dr. Jennifer Wolf EXAM No. 2 Wednesday, March 24, 2004

Name:	
Student Number	

Instructions: Ensure that this exam contains all **ten** questions. Read the exam carefully and judge your time accordingly. Show your work where space is provided. If you need extra space, use the back of a preceding page and clearly indicate the question number. Rough work and work for short-answer questions may also be done on the back of a preceding page. A periodic chart is supplied with this exam.

Maximum Score: 70 marks

Question	Marks
1	/10
2	/4
3	/8
4	/6
5	/4
6	/8
7	/5
8	/9
9	/7
10	/9
TOTAL	/70

Question 1 (10 marks)

What is the maximum number of electrons that can have the following quantum numbers, and what are the possible orbital designations?

of electrons possible orbital designations:

(3p, 2s, etc.)

- (a) n = 2, $m_{\ell} = +1/2$
- (b) $n = 3, \ell = 2$
- (c) $n = 2, \ell = 2$
- (d) $n = 6, \ell = 3$
- (e) $n = 3 m_{\ell} = 0$

Question 2 (4 marks)

Give the electron configurations of the following (do not use noble gas core abbreviations for this question):

- (a) Mo²⁺ _____
- (b) Br _____
- (c) Pb²⁺_____
- (d) Cu ____

Question 3 (8 marks)

Circle the correct choice(s) (may be more than one or none):

Isoelectronic with O^{2-} S^{2-} O^{+} N^{3-}

Isolelectronic with Fe³⁺ Mn²⁺ Cr Ru³⁺

Has 4 unpaired electrons O Ti Cr²⁺

Is diamagnetic Ar Ca O

Most electronegative Cl C Br

Has no d-electrons As P Ti⁴⁺

	nestion 4 (6 marks) atch the following:		
(a)	Atomic radius (pm) 117 121 99 71	F As Cl Si	
(b)	Ionic radius (pm) 99 171 59 140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(c)	2 nd ionization energy (kJ/mol) 4562 2297 1451 2912	Cl P Na Mg	
	Discrete Section 5 (4 marks) (No notes of the following moles)		
	HCN H ₂ CO CH ₂	₃ F CH ₃ Br	CF ₄

(b) Order the following molecules or ions in order of increasing C-O bond length:

CH₃OH

 CO_2 CO_3^{2-}

CO

Question 6 (8 marks)

In the following pairs of molecules or ionic compounds, one is real and the other does not exist. Circle the **incorrect** one **giving your reasoning**.

(a) K_3N Mg_3N

(b) IF_3 FI_3

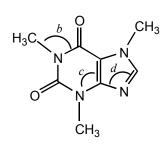
(c) PF_5 NF_5

(d) XeO₂ NeO₂

Question 7 (5 marks)			
(a) Sketch a 2s and the three 2p orbitals:			
(b) Describe (with diagrams if necessary) the sp ² -hybridization scheme:			
Question 8 (9 marks) Draw Lewis structures for the following molecules or ions, and indicate the geometry predicted by VSEPR theory:			
(a) SF_4			
(b) BrF ₅			
(c) SOCl ₂			

Question 9 (7 marks) Methyl isocyanate is a toxic chemical used in the production of many pesticides. Methyl isocyanate has the formula CH ₃ NCO (the methyl group is attached to the nitrogen and the order of the N, C, and O atoms is as shown).
(a) Draw Lewis structures for methyl isocyanate, including all correct resonance forms.

- (b) Indicate all non-zero formal charges on your resonance structures above.
- (c) Based on your resonance structures above, what would you expect the C-N-C bond angle to be? Explain.


(d) Based on your resonance structures above, which C-N bond would you expect to be longer? Explain and be specific!

Question 10 (9 marks)

The following is a partial Lewis structure of caffeine:

- (a) (i) How many lone pairs are there in the complete Lewis structure?
 - (ii) How many sp³-hybridized carbons are there?
 - (iii) How many sp²-hybridized carbons?
 - (iv) How many sp-hybridized carbons? _____
 - (v) How many sp³-hybridized nitrogens? _____
 - (vi) How many sp²-hybridized nitrogens?_____

The partial Lewis structure of caffeine is given again below, this time including labels for some bond angles. Give the approximate bond angles indicated below:

(b) _____ (c) ____ (d) ____