KWANTLEN UNIVERSITY COLLEGE

CHEMISTRY 1110 R11 Spring 2004

Dr. Jennifer Wolf
EXAM No. 2
Wednesday, March 24, 2004

Name: \qquad

Student Number

\qquad

Instructions: Ensure that this exam contains all ten questions. Read the exam carefully and judge your time accordingly. Show your work where space is provided. If you need extra space, use the back of a preceding page and clearly indicate the question number. Rough work and work for short-answer questions may also be done on the back of a preceding page. A periodic chart is supplied with this exam.
Maximum Score: 70 marks

Question	Marks
1	$/ 10$
2	$/ 4$
3	$/ 8$
4	$/ 6$
5	$/ 4$
6	$/ 8$
7	$/ 5$
8	$/ 9$
9	$/ 7$
10	TOTAL

Question 1 (10 marks)
What is the maximum number of electrons that can have the following quantum numbers, and what are the possible orbital designations?

\# of electrons possible orbital designations:

(3p, 2s, etc.)
(a) $\mathrm{n}=2, \mathrm{~m}_{\ell}=+1 / 2$
4
$2 \mathrm{~s}, 2 \mathrm{p}$
(b) $\mathrm{n}=3, \ell=2$
10
3d
(c) $\mathrm{n}=2, \ell=2$
0
(d) $\mathrm{n}=6, \ell=3$
14
(e) $\mathrm{n}=3 \mathrm{~m}_{\ell}=0$
6
3s, 3p, 3d

Question 2 (4 marks)
Give the electron configurations of the following (do not use noble gas core abbreviations for this question):
(a) $\mathrm{Mo}^{2+} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} \mathbf{3} \mathbf{p}^{6} 4 \mathrm{~s}^{2} \mathbf{3} \mathrm{~d}^{10} \mathbf{4} \mathbf{p}^{6} \mathbf{4} \mathrm{~d}^{4}$
(b) $\mathrm{Br} \quad 1 \mathrm{~s}^{2} \mathbf{2} \mathrm{~s}^{\mathbf{2}} \mathbf{2} \mathbf{p}^{6} \mathbf{3} \mathrm{~s}^{\mathbf{2}} \mathbf{3} \mathbf{p}^{6} \mathbf{4} \mathrm{~s}^{\mathbf{2}} \mathbf{3} \mathbf{d}^{\mathbf{1 0}} \mathbf{4} \mathbf{p}^{\mathbf{6}}$
(c) $\mathrm{Pb}^{2+} \quad \mathbf{1} \mathrm{s}^{\mathbf{2}} \mathbf{2} \mathrm{s}^{\mathbf{2}} \mathbf{2} \mathrm{p}^{\mathbf{6}} \mathbf{3} \mathbf{s}^{\mathbf{2}} \mathbf{3} \mathrm{p}^{\mathbf{6}} \mathbf{4} \mathrm{s}^{\mathbf{2}} \mathbf{3} \mathrm{d}^{\mathbf{1 0}} \mathbf{4} \mathrm{p}^{\mathbf{6}} \mathbf{5} \mathrm{s}^{\mathbf{2}} \mathbf{4} \mathrm{d}^{\mathbf{1 0}} \mathbf{5} \mathrm{p}^{\mathbf{6}} \mathbf{6 s}^{\mathbf{2}} \mathbf{4} \mathrm{f}^{14} \mathbf{5} \mathrm{~d}^{\mathbf{1 0}}$
(d) $\mathrm{Cu} \quad 1 \mathrm{~s}^{2} 2 \mathbf{s}^{2} 2 \mathbf{p}^{6} 3 \mathbf{s}^{2} 3 \mathbf{p}^{6} 4 \mathrm{~s}^{1} 3 \mathbf{d}^{10}$

Question 3 (8 marks)
Circle the correct choice(s) (may be more than one or none):
Isoelectronic with O^{2-}
$\mathrm{S}^{2-} \mathrm{O}^{+} \mathrm{N}^{3-}$
Isolelectronic with Fe^{3+}
$\mathrm{Mn}^{2+} \mathrm{Cr} \mathrm{Ru}^{3+}$
Has 4 unpaired electrons
O $\mathrm{Ti} \quad \mathrm{Cr}^{2+}$
Is diamagnetic
Ar Ca O
Most electronegative
$\mathrm{Cl} \quad \mathrm{C} \quad \mathrm{Br}$
Has no d-electrons
As $\quad \mathbf{P} \quad \mathbf{T i}^{\mathbf{4 +}}$

Question 4 (6 marks)
Match the following:
(a) Atomic radius (pm)

117	71	F
121	121	As
99	99	Cl
71	117	Si

(b) Ionic radius (pm)

99	$\underline{\mathbf{1 7 1}}$	$\mathrm{~N}^{3-}$
171	$\underline{\mathbf{1 4 0}}$	O^{2-}
59	$\underline{\mathbf{9 9}}$	Na^{+}
140	$\underline{\mathbf{5 9}}$	Li^{+}

(c) $2^{\text {nd }}$ ionization energy
($\mathrm{kJ} / \mathrm{mol}$)
$4562 \quad \underline{2912} \mathrm{Cl}$
2297
1451
2912
$\underline{2297}$ P
4562 Na
1451 Mg

Question 5 (4 marks) (No need to show work)
(a) Order the following molecules in increasing polarity:

HCN $\quad \mathrm{H}_{2} \mathrm{CO} \quad \mathrm{CH}_{3} \mathrm{~F} \quad \mathrm{CH}_{3} \mathrm{Br} \quad \mathrm{CF}_{4}$
lowest $\mathrm{CF}_{4} \quad \mathrm{CH}_{3} \mathrm{Br}=\mathrm{HCN} \quad \mathrm{H}_{2} \mathrm{CO} \quad \mathrm{CH}_{3} \mathrm{~F}$ highest
(b) Order the following molecules or ions in order of increasing C-O bond length:
$\mathrm{CO} \quad \mathrm{CO}_{2} \quad \mathrm{CO}_{3}{ }^{2-} \quad \mathrm{CH}_{3} \mathrm{OH}$
Lowest $\mathrm{CO} \quad \mathrm{CO}_{2} \quad \mathrm{CO}_{3}{ }^{\mathbf{2 -}} \mathbf{C H}_{3} \mathrm{OH}$ highest

Question 6 (8 marks)
In the following pairs of molecules or ionic compounds, one is real and the other does not exist. Circle the incorrect one giving your reasoning.
(a) $\mathrm{K}_{3} \mathrm{~N} \quad \mathbf{M g}_{3} \mathbf{N}$
$\mathrm{Mg}_{3} \mathrm{~N}$ is incorrect because Mg forms Mg^{2+} ions, and N forms N^{3-} ions.
(b) IF_{3}
FI_{3}
FI_{3} is incorrect, because F cannot have an expanded octet while I can.
(c) $\mathrm{PF}_{5} \quad \mathbf{N F}_{5}$
NF_{5} is incorrect because N cannot have an expanded octet, while P can.
(d) $\mathrm{XeO}_{2} \quad \mathrm{NeO}_{2}$
NeO_{2} is incorrect, because Ne cannot have an expanded octet, while Xe can.

Question 7 (5 marks)
(a) Sketch a 2 s and the three 2 p orbitals:
-- see orbital handout, or figure 12-5 in book --
(b) Describe (with diagrams if necessary) the sp^{2}-hybridization scheme:
-- see figure 12-8 on page 442 --

Question 8 (9 marks)
Draw Lewis structures for the following molecules or ions, and indicate the geometry predicted by VSEPR theory:
(a) SF_{4}
-- Lewis structure has one lone pair on S, therefore geometry is see-saw (see table 11.1)
(b) BrF_{5}
-- Lewis structure has one lone pair on Br , therefore geometry is square pyramidal (see table 11.1)
(c) SOCl_{2}
-- Lewis structure has one lone pair on S , therefore geometry is trigonal pyramidal

Question 9 (7 marks)
Methyl isocyanate is a toxic chemical used in the production of many pesticides. Methyl isocyanate has the formula $\mathrm{CH}_{3} \mathrm{NCO}$ (the methyl group is attached to the nitrogen and the order of the N, C, and O atoms is as shown).
(a) Draw Lewis structures for methyl isocyanate, including all correct resonance forms.

Partial Lewis structures (formal charges are shown below structures).

$\mathrm{N}+\quad \mathbf{O} \quad \mathbf{N -} \quad \mathbf{O +}$
(b) Indicate all non-zero formal charges on your resonance structures above.
(c) Based on your resonance structures above, what would you expect the C-N-C bond angle to be? Explain.

The $\mathbf{C}-\mathrm{N}$ - C bond angle should be $\mathbf{1 2 0}^{\boldsymbol{\circ}}$. The first resonance structure is the best one; therefore the geometry around the nitrogen should be triogal planar electron geometry and a bent $\mathbf{1 2 0}^{\circ}$ structure.
(d) Based on your resonance structures above, which $\mathrm{C}-\mathrm{N}$ bond would you expect to be longer? Explain and be specific!

The $\mathrm{CH}_{3}-\mathrm{N}$ bond should be longer; this will be a single bond, whereas the second will be closer to a double bond.

Question 10 (9 marks)
The following is a partial Lewis structure of caffeine:

(a) (i) How many lone pairs are there in the complete Lewis structure? 8
(ii) How many sp 3-hybridized carbons are there? 3
(iii) How many sp^{2}-hybridized carbons? 5
(iv) How many sp-hybridized carbons? $\mathbf{0}$
(v) How many sp ${ }^{3}$-hybridized nitrogens? 3
(vi) How many sp^{2}-hybridized nitrogens? $\mathbf{1}$

The partial Lewis structure of caffeine is given again below, this time including labels for some bond angles. Give the approximate bond angles indicated below:

(b) 109.5°
(c) $\mathbf{1 2 0}^{\boldsymbol{\circ}}$
(d) $\mathbf{1 2 0}^{\circ}$

