KWANTLEN UNIVERSITY COLLEGE CHEMISTRY 1110 R11 Spring 2004 Dr. Jennifer Wolf EXAM No. 2 Wednesday, March 24, 2004

Name: ______

Student Number_____

Instructions: Ensure that this exam contains all **ten** questions. Read the exam carefully and judge your time accordingly. Show your work where space is provided. If you need extra space, use the back of a preceding page and clearly indicate the question number. Rough work and work for short-answer questions may also be done on the back of a preceding page. A periodic chart is supplied with this exam. **Maximum Score: 70 marks**

Question	Marks
1	/10
2	/4
3	/8
4	/6
5	/4
6	/8
7	/5
8	/9
9	/7
10	/9
TOTAL	/70

Question 1 (10 marks)

What is the maximum number of electrons that can have the following quantum numbers, and what are the possible orbital designations?

	# of electrons	possible orbital designations: (3p, 2s, etc.)
(a) $n = 2, m_{\ell} = +1/2$	4	2s, 2p
(b) $n = 3, \ell = 2$	10	3d
(c) $n = 2, \ell = 2$	0	-
(d) $n = 6, \ell = 3$	14	6f
(e) $n = 3 m_{\ell} = 0$	6	3s, 3p, 3d

Question 2 (4 marks)

Give the electron configurations of the following (do not use noble gas core abbreviations for this question):

(a) Mo^{2+} 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶4d⁴

(b) Br
$$1s^22s^22p^63s^23p^64s^23d^{10}4p^6$$

- (c) $Pb^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10}$
- (d) Cu $1s^22s^22p^63s^23p^64s^13d^{10}$

Question 3 (8 marks)

Circle the correct choice(s) (may be more than one or none):

Isoelectronic with O ²⁻	S ²⁻	\mathbf{O}^+	N ³⁻
Isolelectronic with Fe ³⁺	Mn	²⁺ Cr	Ru ³⁺
Has 4 unpaired electrons	Ο	Ti	Cr ²⁺
Is diamagnetic	Ar	Ca	0
Most electronegative	Cl	С	Br
Has no d-electrons	As	Р	Ti ⁴⁺

Question 4 (6 marks)

Match the following:

(a) Atomic radius (pm) 117 71 121 121 As

141	1 4 1	110
99	99	Cl
71	117	Si

F

(b) Ionic radius (pm)

99	<u>171</u>	N^{3-}
171	140	O^{2-}
59	<u>99</u>	Na^+
140	<u>59</u>	Li^+

(c) 2^{nd} ionization energy (1 T / 1

<u>2912</u>	Cl
<u>2297</u>	Р
4562	Na
<u>1451</u>	Mg
	<u>2912</u> <u>2297</u> <u>4562</u> <u>1451</u>

Question 5 (4 marks) (No need to show work)

(a) Order the following molecules in increasing polarity:

HCN H₂CO CH_3F CH₃Br CF_4 $CH_3Br = HCN$ H₂CO CH₃F highest lowest CF₄

(b) Order the following molecules or ions in order of increasing C-O bond length:

 CO_{3}^{2-} CO_2 CH₃OH CO CO₃²⁻ CH₃OH highest Lowest CO CO₂

Question 6 (8 marks)

In the following pairs of molecules or ionic compounds, one is real and the other does not exist. Circle the **incorrect** one **giving your reasoning**.

(a) K_3N Mg₃N

 Mg_3N is incorrect because Mg forms Mg^{2+} ions, and N forms N^{3-} ions.

(b) IF₃ **FI**₃

FI₃ is incorrect, because F cannot have an expanded octet while I can.

(c) PF_5 **NF**₅

NF₅ is incorrect because N cannot have an expanded octet, while P can.

(d) XeO_2 NeO₂

NeO₂ is incorrect, because Ne cannot have an expanded octet, while Xe can.

Question 7 (5 marks)

(a) Sketch a 2s and the three 2p orbitals:

-- see orbital handout, or figure 12-5 in book --

- (b) Describe (with diagrams if necessary) the sp^2 -hybridization scheme:
 - -- see figure 12-8 on page 442 --

Question 8 (9 marks) Draw Lewis structures for the following molecules or ions, and indicate the geometry predicted by VSEPR theory:

(a) SF₄

-- Lewis structure has one lone pair on S, therefore geometry is see-saw (see table 11.1)

(b) BrF_5

-- Lewis structure has one lone pair on Br, therefore geometry is square pyramidal (see table 11.1)

(c) SOCl₂

-- Lewis structure has one lone pair on S, therefore geometry is trigonal pyramidal

Question 9 (7 marks)

Methyl isocyanate is a toxic chemical used in the production of many pesticides. Methyl isocyanate has the formula CH_3NCO (the methyl group is attached to the nitrogen and the order of the N, C, and O atoms is as shown).

(a) Draw Lewis structures for methyl isocyanate, including all correct resonance forms.

Partial Lewis structures (formal charges are shown below structures).

(b) Indicate all non-zero formal charges on your resonance structures above.

(c) Based on your resonance structures above, what would you expect the C-N-C bond angle to be? Explain.

The C-N-C bond angle should be 120°. The first resonance structure is the best one; therefore the geometry around the nitrogen should be triogal planar electron geometry and a bent 120° structure.

(d) Based on your resonance structures above, which C-N bond would you expect to be longer? Explain and be specific!

The CH₃-N bond should be longer; this will be a single bond, whereas the second will be closer to a double bond.

Question 10 (9 marks) The following is a partial Lewis structure of caffeine:

- (a) (i) How many lone pairs are there in the complete Lewis structure? 8
 - (ii) How many sp³-hybridized carbons are there? 3
 - (iii) How many sp²-hybridized carbons? **5**
 - (iv) How many sp-hybridized carbons? 0
 - (v) How many sp³-hybridized nitrogens? 3
 - (vi) How many sp²-hybridized nitrogens? 1

The partial Lewis structure of caffeine is given again below, this time including labels for some bond angles. Give the approximate bond angles indicated below:

(b) **109.5°** (c) **120°** (d) **120°**