СНЕ	EM-1094	TEST # 1	NAME:	
1.	In each case, deci	de if the change is ch	emical (write C) or physical	change (write P) [2
	a) A cup of bleach	changes the color of	your favorite T-shirt.	
	b) Water vapor co	ndenses on your wind	lshield.	
	c) Plants use CO ₂	from the air to make	sugar.	
	d) When making e	egg salad the silver sp	oon is tarnished.	
2.	Classify each of th	ne following as physic	al (write P) or chemical (writ	te C) property.[2]
	a) The density of t	itanium metal is 4.5	g/cm ³ .	
	b) Iron turns to ru	ast in the presence of	air and water.	
	c) The normal colo	or of elemental bromin	ne is orange.	
	d) Tin metal melts	s at 505 K.		
3.	Use the word defin	nite or indefinite to de	escribe the shape of: [1.5]	
	a) Solids			
	b) Gases			
	c) Liquids			
4.	Gold has a meltin Physical state of g	-	l a boiling point of 2966°C.	Specify the
	a) -200°C			
	b) 1000°C			

Classify each of the following as a hetero or homogeneous mixture. [1]

a) Small chips of iron are mixed with sand.

c) 2000°C

b) Rum and coke.

5.

6.	Give the number of significant figures in each of the following numbers. [3]					
	a) 0.0123	b) 1.020		c) 1.6402		
	d) 2.300	e) 2.34 x 10 ⁹		f) 1.1600		
7.	Round off each of the answer in scientific no	_	significant figures a	and express your		
	a) 3883		b) 1000			
	c) 0.00347		d) 27			
8.	Carry out the following significant figures. [2]	g calculation, and 1	report your answer	in the correct number of		
	a) $(0.0546 \times 16.0000 \times 16.00000 \times 16.0000 $	7.779)				
	b) $\frac{1.68(23.56 - 2.3)}{1.248 \times 10^3}$					
9.	Carry out the following	g conversions.				
	a) 25 mg to ng (1 ng =	10 ⁻⁹ g) [1]				
	b) 15 m ³ to yd ³ (1 yd = 36 in, 1 in = 2.54 cm) [3]					
	c) 1.5 L to cm ³ [1]					
10.	An ancient gold coin is which volume = Π (rad is the mass of the coin	ius²) (thickness). I		ck. It is a cylinder for d coin is 19.3 g/cm³, what		

11.	When you heat popcorn, it pops because it loses water explosively. Assume a kernel of corn, with a mass of 0.125 g, has a mass of only 0.106 g after popping.
	a) What percent of its mass did the kernel lose on popping? [1]
	b) Popcorn is sold by the pound. Using 0.125 g as the average mass of a popcorn kernel, how many kernels are in a pound of popcorn? (1lb = 453.6 g) [1]
12.	Automobile batteries are filled with sulfuric acid. What is the mass of the acid (in grams) in 500.0 mL of the battery acid solution if the density of the solution is 1.285 g/cm^3 and if the solution is 38.08% sulfuric acid by mass? [3]
13.	Determine the quantity of heat that must be added to raise the temperature of a cup of coffee (250 mL) from 20.5°C to 95.6°C. Assume that water and coffee have the same density (1.00 g/mL) and same specific heat (4.184 J/g °C). [3]
14.	A 88.5 g piece of iron at 78.8°C is placed in a beaker containing 244 g of water at 18.8°C. What is the final temperature when the thermal equilibrium is reached. Specific heat of iron is 0.449 J/g °C). [4]

15.	Give the name of each of the following elements. [2]						
	a) Mg			b) P			
	c) K	e) K d) Hg		g			
16.	Give the symbol for each of the elements. [2]						
	a) Zinc	b) Krypton		c) Sodium		d) Lead	
17.	Complete the following table: [4.5]						
	Isotope Notation	Z	A	p ⁺	nº	e-	
	⁸⁰ ₃₅ Br						
		92	238				
				29	34	28	
		9			10	10	
18.	a) Name an element in group 2A. [1] b) Name a halogen that is solid at room temperature. [1] c) What noble gas element is in the 4th period? [1]						
d) What alkali metal is in the 3 rd period? [1]							
19.20.	Metals can be drawn into thin wires. What is the name of this property? [1] A solid can go directly into the gaseous state without going into the liquid state. What is the name of this property? [1]						