CHEN	M-1094 TES	T # 3	NAME:
1.	a) Calculate molecular	mass of glucose C ₆ H	I ₁₂ O ₆ [1]
	b) Calculate molar mas	ss of glucose. [1]	
2.	For 27.0 g of glucose, o	calculate [8]	
	a) moles of glucose		
	b) molecules of glucose	2	
	c) moles of atoms		
	d) number of atoms		

3. How many ions are there in 20.0 g of $Al_2(SO_4)_3$ (MM=342.3)? [2]

4. A certain experiment requires $3.01 \ge 10^{23}$ atoms of carbon. How many grams of C₆H₆ (MM=78.0) must be used to obtain the carbon atoms? **[2]**

5. Vanillin is a common flavouring agent. It has a molar mass of 152 g/mol and is 63.15 % C and 5.30 % H; the remainder is oxygen. Determine the molecular formula of vanillin. [5]

6. Laughing gas, N₂O (MM=44.0), is made by the careful decomposition of ammonium nitrate (MM=80.0)

 $NH_4NO_3(s) \rightarrow N_2O(g) + 2 H_2O(g)$

If you begin with 125 g of ammonium nitrate, how many grams of laughing gas can you obtain? **[2]**

7. The reaction of red phosphorus and liquid bromine is given below

 $2 P(s) + 3 Br_2(l) \rightarrow 2 PBr_3(l)$

12.7 g of Br₂ (MM=159.8) are reacted with an excess of P (MM=31.0). If 10.9 g of PBr₃ (MM=270.7) are isolated, what is the % yield of this compound? [4]

8. Dinitrogen tetrafluoride, N_2F_4 (MM=104), can be produced by the reaction of NH₃ (MM=17.0) with F₂ (MM=38.0).

 $2 \text{ NH}_3(g) + 5 \text{ F}_2(g) \rightarrow \text{ N}_2\text{F}_4(g) + 6 \text{ HF}(g)$

a) If 4.00 g of NH_3 and 14.0 g of F_2 are allowed to react, which is the limiting reagent? [4]

b) How many grams of N₂F₄ are produced? [2]

c) How many grams of which reagent, if any, are left unreacted? [3]

9. The thermite reaction is given below

 $2 \operatorname{Al}(s) + \operatorname{Fe}_2\operatorname{O}_3(s) \rightarrow \operatorname{Al}_2\operatorname{O}_3(s) + 2 \operatorname{Fe}(s) + 852 \text{ kJ}$

- a) Is this exothermic or endothermic reaction? [1]
- b) How many kJ of energy are involved if 20.0 g Al (MM=27.0) is reacted? [2]

c) Calculate the final temperature of 155 g of water, initially at 25°C, if the heat involved in part (b) above is used to heat water. The Specific heat of water is 4.184 J/g °C. [3]

10. 25.00 mL of 0.100 M H₃PO₄(aq) is titrated against 0.200 M NaOH(aq). How many mL of NaOH are needed to reach the end point? **[4]**

 $H_3PO_4(aq) + 3 \text{ NaOH}(aq) \rightarrow Na_3PO_4(aq) + 3 H_2O(l)$

11. Density of hydrochloric acid solution is 1.145 g/mL and is 25.0% HCl by mass. Calculate the molarity of HCl solution. **[3]**

12. The element magnesium has three stable isotopes with the following masses and abundances:

²⁴ Mg	23.9850 amu	78.99%
^{25}Mg	24.9850 amu	10.00%
^{26}Mg	25.9826 amu	11.01%

Calculate the average atomic mass of magnesium from these data. [3]