NAME: \qquad

1. a) Calculate molecular mass of glucose $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 2}} \mathbf{O}_{\mathbf{6}}$
b) Calculate molar mass of glucose. [1]
2. For 27.0 g of glucose, calculate [8]
a) moles of glucose \qquad
b) molecules of glucose
c) moles of atoms
d) number of atoms
\qquad
\qquad
3. How many ions are there in 20.0 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{MM}=342.3)$? [2]
4. A certain experiment requires 3.01×10^{23} atoms of carbon. How many grams of $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{MM}=78.0)$ must be used to obtain the carbon atoms? [2]
5. Vanillin is a common flavouring agent. It has a molar mass of $152 \mathrm{~g} / \mathrm{mol}$ and is $63.15 \% \mathrm{C}$ and $5.30 \% \mathrm{H}$; the remainder is oxygen. Determine the molecular formula of vanillin. [5]
6. Laughing gas, $\mathrm{N}_{2} \mathrm{O}(\mathrm{MM}=44.0)$, is made by the careful decomposition of ammonium nitrate ($\mathrm{MM}=80.0$)

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

If you begin with 125 g of ammonium nitrate, how many grams of laughing gas can you obtain? [2]
7. The reaction of red phosphorus and liquid bromine is given below
$2 \mathrm{P}(\mathrm{s})+3 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{PBr}_{3}(\mathrm{l})$
12.7 g of $\mathrm{Br}_{2}(\mathrm{MM}=159.8)$ are reacted with an excess of $\mathrm{P}(\mathrm{MM}=31.0)$. If 10.9 g of $\mathrm{PBr}_{3}(\mathrm{MM}=270.7)$ are isolated, what is the \% yield of this compound? [4]
8. Dinitrogen tetrafluoride, $\mathrm{N}_{2} \mathrm{~F}_{4}(\mathrm{MM}=104)$, can be produced by the reaction of $\mathrm{NH}_{3}(\mathrm{MM}=17.0)$ with $\mathrm{F}_{2}(\mathrm{MM}=38.0)$.
$2 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{~F}_{4}(\mathrm{~g})+6 \mathrm{HF}(\mathrm{g})$
a) If 4.00 g of NH_{3} and 14.0 g of F_{2} are allowed to react, which is the limiting reagent? [4]
b) How many grams of $\mathrm{N}_{2} \mathrm{~F}_{4}$ are produced? [2]
c) How many grams of which reagent, if any, are left unreacted? [3]
9. The thermite reaction is given below
$2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{s})+852 \mathrm{~kJ}$
a) Is this exothermic or endothermic reaction?
[1]
b) How many kJ of energy are involved if $20.0 \mathrm{~g} \mathrm{Al}(\mathrm{MM}=27.0)$ is reacted? [2]
c) Calculate the final temperature of 155 g of water, initially at $25^{\circ} \mathrm{C}$, if the heat involved in part (b) above is used to heat water. The Specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$. [3]
10. 25.00 mL of $0.100 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ is titrated against $0.200 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$. How many mL of NaOH are needed to reach the end point? [4]

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

11. Density of hydrochloric acid solution is $1.145 \mathrm{~g} / \mathrm{mL}$ and is $25.0 \% \mathrm{HCl}$ by mass. Calculate the molarity of HCl solution. [3]
12. The element magnesium has three stable isotopes with the following masses and abundances:

${ }^{24} \mathrm{Mg}$	23.9850 amu	78.99%
${ }^{25} \mathrm{Mg}$	24.9850 amu	10.00%
${ }^{26} \mathrm{Mg}$	25.9826 amu	11.01%

Calculate the average atomic mass of magnesium from these data. [3]

