CHEM 1094-DENSITY

1. Mercury is a dense material by any standard, particularly as a liquid. 150.0 mL of mercury has a mass of $2.04 \times 10^{3} \mathrm{~g}$. Calculate the density of mercury. ($\mathbf{1 3 . 6} \mathbf{g} / \mathbf{m L}$)
2. The density of a sodium hydroxide solution is $1.1589 \mathrm{~g} / \mathrm{mL}$. What is the mass of 2.000 L of this solution? (2318 g)
3. The density of carbon tetrachloride is $1.595 \mathrm{~g} / \mathrm{mL}$. How many mL of carbon tetrachloride are needed if 500.0 g of it are required? ($\mathbf{3 1 3 . 5} \mathbf{~ m L}$)
4. The density of benzene is $0.879 \mathrm{~g} / \mathrm{mL}$. How many grams of benzene are needed to fill a 25 mL graduated cylinder? (22.0 g)
5. The density of battery acid solution is $1.540 \mathrm{~g} / \mathrm{mL}$. How much does 969 mL of it weighs.(1492 g)
6. A glass bulb with a stopcock has a mass of 54.9762 g when evacuated, and 54.9845 g when filled with a gas. The bulb will hold 50.0 g of water $(\mathrm{d}=1.00 \mathrm{~g} / \mathrm{mL})$. Calculate the density of the gas. (1.66 x $\mathbf{1 0}^{-4} \mathbf{g} / \mathbf{m L}$)
7. A piece of aluminum has a mass of 40.3 g and occupies a volume of 14.93 cm^{3}. Calculate the density of aluminum. ($2.70 \mathrm{~g} / \mathrm{cm}^{3}$)
8. Among natural minerals, gold is one of the most dense at $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. Find the volume of 68.3 g of gold. ($3.54 \mathrm{~cm}^{\mathbf{3}}$)
9. Milk is among the heavier items carried home from the grocery store. Find the mass of 4.00 L of milk ($\mathrm{d}=1.03 \mathrm{~g} / \mathrm{mL}$). ($\mathbf{4 1 2 0} \mathbf{g}$)
10. A student obtained the following data in order to obtain the density of a sample. Calculate the density of the sample. $(8.4318 \mathbf{g} / \mathbf{m L})$
a) Mass of empty flask $=24.3251 \mathrm{~g}$
b) Mass of flask filled to mark with water $=74.2613 \mathrm{~g}$
c) Mass of empty flask and sample $=55.7884 \mathrm{~g}$
d) Mass of flask and sample and water filled to mark $=101.9931 \mathrm{~g}$
