CHEM 1094 EMPIRICAL AND MOLECULAR FORMULAS

1. Calculate the empirical (simplest) formula from the following information.

a)	C = 52.9%	O = 47.1% (C ₃ O	2)
b)	C = 54.5%	O = 36.6%	H = 9.1% (C ₂ H ₄ O)
c)	P = 56.3%	S = 43.7 (P₄S₃)	
d)	H = 4.55	P = 47.0	O = 48.5 (H ₃ PO ₂)
e)	Si = 30.2	O = 8.59	F = 61.2 ((Si ₂ OF ₆)

- 2. Determine the molecular formulas of the compounds for which the following empirical formulas and molar masses are given.
 - a) CH_2 42.0 (C₃H₆) b) SbO_2 307.6 (Sb₂O₄) c) B_2H_3 98.4 (B₈H₁₂) d) SeS 111.1 (SeS) e) SC1 135.2 (S₂Cl₂)
- Caffeine has an elemental composition of 49.5% carbon, 5.15% hydrogen, 28.9% nitrogen and the rest is oxygen. What is the simplest formula of caffeine? The molar mass of caffeine is 194.2 g. Calculate its molecular formula. (C₄H₅N₂O, C₈H₁₀N₄O₂)
- Monosodium glutamate (MSG) has 35.51% carbon, 4.77% hydrogen, 37.85% oxygen, 8.29% nitrogen, and 13.60% sodium. What is its molecular formula if its molar mass is 169 g?
 (Same EF and MF of C₅H₈O₄NNa)
- When 5.00 g of phosphorus (symbol P) is burned in air, 11.44 g of the oxide is produced. Calculate the simplest formula of the oxide. (P₂O₅)
- 6. When 3.46 g of the hydrate of sodium carbonate is heated to drive off the water of hydration, the anhydrous residue has a mass of 1.28 g. What is the formula of the hydrate? (Na₂CO₃ 10 H₂O)