CHEM-1094 MOLE PRACTICE

- 1. Do the following calculations:
 - a) Number of moles in 17.7 g of H_2 (8.85)
 - b) Number of grams in 0.20 moles of F_2 . (7.6)
 - c) Number of molecules in 0.50 moles of H_2S . (3.01x10²³)
 - d) Number of atoms in 0.70 moles of Br_2 . (8.4x10²³)
 - e) Number of moles of Na⁺ in 1.50 moles of Na₂O. (3.00)
 - f) Number of moles of O atoms in 100.1 g of CaCO₃. (3.00)
 - g) Number of C atoms in 12.0 g of $C_{12}H_{26}$. (5.1x10²³)
 - h) Number of moles of F- in 39.0 g of CaF₂. (1.00)
 - i) Number of moles of ions in 0.25 moles of (NH₄)₂SO₄. **(0.75)**
 - j) Number of moles of O atoms in 8.00 g of oxygen gas. (0.50)
- 2. Perform the following calculations for 6.84 g of $C_{12}H_{22}O_{11}$, sucrose.
 - a) Number of moles of sucrose. (0.0200)
 - b) Number of moles of carbon. (0.240)
 - c) Number of moles of hydrogen gas. (0.22)
 - d) Number of H atoms. (2.65x10²³)
 - e) Number of moles of O atoms. (0.22)
 - f) Number of O atoms. (1.32×10^{23})
 - g) Number of moles of atoms. (0.900)
 - h) Number of atoms. (5.42x10²³)