STOICHIOMETRY

1. Oxygen is prepared by heating KClO_{3} :

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

a) How many grams of O_{2} are obtained from $3.00 \mathrm{~g} \mathrm{KClO}_{3}$?
b) How many grams of KCl are obtained if 6.00 g of O_{2} are formed?
c) How many grams of KClO_{3} are needed to prepare $16.0 \mathrm{~g} \mathrm{O}_{2}$?
2. Sodium thiosulfate, photographer's hypo, reacts with unexposed silver bromide in the emulsion to form sodium bromide and a soluble compound of formula $\mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]$.

$$
2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+\mathrm{AgBr}(\mathrm{~s}) \rightarrow \mathrm{NaBr}(\mathrm{aq})+\mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)\right]_{2}(\mathrm{aq})
$$

a) How many grams of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ are needed to dissolve 1.0 mg of AgBr ?
b) Calculate the mass of AgBr that will produce 1.00 g of $\mathrm{Na}_{3}\left[\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)\right]_{2}$?
3. The camel stores the fat tristearin, $\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}$, in its hump. As well as being a source of energy, the fat is also a source of water because, when its used, the following reaction takes place.

$$
2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})+163 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 114 \mathrm{CO}_{2}(\mathrm{~g})+110 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a) What mass of water is available from 2.5 kg of this fat?
b) What mass of O_{2} is needed to react with 2.5 g of this fat?
4. Commercial sulfuric acid has, a density of $1.45 \mathrm{~g} / \mathrm{mL}$ and is 55.1% $\mathrm{H}_{2} \mathrm{SO}_{4}$ by mass , is used for the production of H_{2} by the reaction:

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}
$$

What mass and volume of this commercial acid are needed for the production of 50.0 g of H_{2} ?
5. If 3.50 g of FeBr_{3} and 6.4 g of $\mathrm{Na}_{2} \mathrm{~S}$ are combined in a solution, how many grams of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ can be made by the following reaction?

$$
2 \mathrm{FeBr}_{3}(\mathrm{aq})+3 \mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})+6 \mathrm{NaBr}(\mathrm{aq})
$$

6. Calcium carbide, CaC_{2}, reacts with water to form calcium hydroxide and flammable gas acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$. The reaction is:

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

a) Which is the limiting reactant when 100.0 g of water reacts with 100.0 g of calcium carbide?
b) What mass of acetylene can be produced?
c) What mass of reactant remains after reaction is complete?
7. A mixture of 7.45 g of iron(II) oxide and 3.00 g of Al are heated and the reaction takes place:

$$
3 \mathrm{FeO}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow 3 \mathrm{Fe}(1)+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

a) Which is the limiting reactant?
b) Calculate the maximum amount of iron that can be produced.
c) Calculate the mass of excess reactant remaining.
8. When aqueous solution of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ are mixed the reaction is

$$
3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{HNO}_{3}(\mathrm{aq})
$$

How many grams of the solid can be formed from 206 g of calcium nitrate and 150 g of phosphoric acid?

