NAME:

Show all work. Work independently.

1. Calculate the standard enthalpy of formation, ΔH^{o}_{f} , of carbon disulfide, $CS_{2}(l)$ from the information given below. **[4]**

$C(s) + O_2(g) \rightarrow CO_2(g)$	∆Hº = -393.5 kJ
$S(s) + O_2(g) \rightarrow SO_2(g)$	ΔH° = -296.1 kJ
$CS_2(l) + 3 O_2(g) \rightarrow CO_2(g) + 2 SO_2(g)$	ΔH° = -1072 kJ

2. The standard enthalpy of formations (in kJ/mol) of $CO_2(g)$, $H_2O(l)$, and benzene, $C_6H_6(l)$, are -393.5, -285.8, and +49.04, respectively. Calculate the enthalpy of combustion reaction of benzene. **[4]**

$$C_6H_6(l) + 15/2 O_2(g) \rightarrow 6 CO_2(g) + 3 H_2O(l)$$

3. A 50.0 mL solution of 0.100 M AgNO₃ was mixed with 52.0 mL solution of 0.100 M HCl. The two solutions were initially at 22.60°C. The final temperature of the reaction mixture was 23.40°C. assuming that the density of each solution is 1.00 g/mL and that the specific heat is 4.184 J/g °C. Calculate Δ H for the following reaction. **[4]**

 $AgNO_3(aq) + HCl(aq) \rightarrow AgCl(aq) + HNO_3(aq)$

- 4. Write the complete thermochemical equation that corresponds to: [2] ΔH_{f^0} of CaCO₃(s) = -1207 kJ/mol
- 5. Calculate the density of $COCl_2$, a poisonous gas at 27.0°C and 733 Torr. [3]

6. A 25.0 g impure sample of zinc is allowed to react with excess HCl:

 $Zn(s) + 2 HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$

7.80 L of $H_2(g)$ is collected by displacement of water at 25.0°C and a pressure of 0.980 atm. Calculate the percent purity, by mass, of the zinc sample. Vapor pressure of water at 25.0°C is 23.8 Torr. **[5]**

7. Nitroglycerin, $C_3H_5(NO_3)_3$, an explosive compound decomposes according to the reaction:

 $4 \text{ C}_{3}\text{H}_{5}(\text{NO}_{3})_{3}(\text{l}) \rightarrow 12 \text{ CO}_{2}(\text{g}) + 10 \text{ H}_{2}\text{O}(\text{g}) + 6 \text{ N}_{2}(\text{g}) + \text{O}_{2}(\text{g})$

a) What is the maximum pressure that a 10.0 L container will be able to withstand if 5.00 g of nitroglycerin was decomposed and the temperature reached 1250°C. [4]

b) What are the partial pressures of the gases under these conditions? [4]

8. At 520°C, K_c is 67 for the equilibrium , $H_2(g) + I_2(g) \Leftrightarrow 2 HI(g)$

Calculate K_c at the same temperature for [2]

a)	$2 \text{ HI(g)} \Leftrightarrow H_2(g) + I_2(g)$	K _c =
b)	$HI(g) \Leftrightarrow \frac{1}{2} H_2(g) + \frac{1}{2} I_2(g)$	Kc =

9. For the equilibrium, $2 \text{ HI}(g) \Leftrightarrow H_2(g) + I_2(g)$ $K_c = 0.0025 \text{ at } 800^{\circ}\text{C}$. 0.80 mole of HI, 0.26 mole of H₂, and 0.26 mole of I₂ were placed in a 20.0 L container at 800°C. Calculate the concentrations of all the species at equilibrium. **[5]**

10. Consider the following equilibrium system:

4 NH₃(g) + 3 O₂(g) \Leftrightarrow 2 N₂(g) + 6 H₂O(l) Δ H = -1530.4 kJ

by using Le Chatelier's principle. indicate the following: (**I** = increase, **D** = decrease, **NC** = no change) **[3**]

	[N ₂]	K _c
a) O ₂ is removed		
b) NH_3 is added		
c) volume of container is increased		
d) temperature is increased		
e) water is added (no volume change)		