CHEM-1105

TEST \# 2
NAME:

Show all work. Work independently.

1. Calculate the standard enthalpy of formation, $\Delta \mathrm{H}^{\circ} \mathrm{f}$, of carbon disulfide, CS_{2} (l) from the information given below. [4]

$$
\begin{array}{ll}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=-393.5 \mathrm{~kJ} \\
\mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=-296.1 \mathrm{~kJ} \\
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=-1072 \mathrm{~kJ}
\end{array}
$$

2. The standard enthalpy of formations (in $\mathrm{kJ} / \mathrm{mol}$) of $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(1)$, and benzene, $\mathrm{C}_{6} \mathrm{H}_{6}(1)$, are $-393.5,-285.8$, and +49.04 , respectively. Calculate the enthalpy of combustion reaction of benzene. [4]

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

3. A 50.0 mL solution of $0.100 \mathrm{M} \mathrm{AgNO}_{3}$ was mixed with 52.0 mL solution of 0.100 M HCl . The two solutions were initially at $22.60^{\circ} \mathrm{C}$. The final temperature of the reaction mixture was $23.40^{\circ} \mathrm{C}$. assuming that the density of each solution is $1.00 \mathrm{~g} / \mathrm{mL}$ and that the specific heat is 4.184 $\mathrm{J} / \mathrm{g}{ }^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ for the following reaction. [4]

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq})
$$

4. Write the complete thermochemical equation that corresponds to: [2] $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ of $\mathrm{CaCO}_{3}(\mathrm{~s})=-1207 \mathrm{~kJ} / \mathrm{mol}$
5. Calculate the density of COCl_{2}, a poisonous gas at $27.0^{\circ} \mathrm{C}$ and 733 Torr. [3]
6. A 25.0 g impure sample of zinc is allowed to react with excess HCl :

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

$7.80 \mathrm{~L}^{\circ}$ of $\mathrm{H}_{2}(\mathrm{~g})$ is collected by displacement of water at $25.0^{\circ} \mathrm{C}$ and a pressure of 0.980 atm . Calculate the percent purity, by mass, of the zinc sample. Vapor pressure of water at $25.0^{\circ} \mathrm{C}$ is 23.8 Torr. [5]
7. Nitroglycerin, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}$, an explosive compound decomposes according to the reaction:

$$
4 \mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{l}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+6 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a) What is the maximum pressure that a 10.0 L container will be able to withstand if 5.00 g of nitroglycerin was decomposed and the temperature reached $1250^{\circ} \mathrm{C}$. [4]
b) What are the partial pressures of the gases under these conditions? [4]
8. At $520^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}$ is 67 for the equilibrium , $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$

Calculate K_{c} at the same temperature for [2]
a) $\quad 2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=$ \qquad
b) $\quad \mathrm{HI}(\mathrm{g}) \Leftrightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{I}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=$ \qquad
9. For the equilibrium, $\quad 2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=0.0025$ at $800^{\circ} \mathrm{C}$. 0.80 mole of $\mathrm{HI}, 0.26$ mole of H_{2}, and 0.26 mole of I_{2} were placed in a 20.0 L container at $800^{\circ} \mathrm{C}$. Calculate the concentrations of all the species at equilibrium. [5]
10. Consider the following equilibrium system:
$4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-1530.4 \mathrm{~kJ}$
by using Le Chatelier's principle. indicate the following: ($\mathbf{I}=$ increase, $\mathbf{D}=$ decrease, $\mathbf{N C}=$ no change) [3]
\mathbf{K}_{c}
a) O_{2} is removed
b) NH_{3} is added
c) volume of container is increased
d) temperature is increased
e) water is added (no volume change)

