Apr. 04,2003

PLEASE BE NEAT AND ORGANIZED

1. Complete the table. ($K_w = 1.00 \ge 10^{-14} \ge 25^{\circ}C$). [3]

РН	рОН	[H ₃ O ⁺]	[OH-]
	3.25		
		0.200	

2. Complete the table: **[3]**

ACIDS	NH ₃	H ₂ PO ₄ -	
BASE			CO ₃ ²⁻

3. Calculate the pH for the following solutions.

a) 0.10 M Ca(OH)₂(aq) **[1]**

b) A mixture of 100.0 mL of 0.10 M HBr(aq) and 50.0 mL of 0.20 M KOH. $\car{[2]}$

4. a) Calculate the pH, pOH, and % ionization of 0.150 M HC₃H₅O₂, propanoic acid. $K_a = 1.3 \times 10^{-5}$. [4]

 $HC_3H_5O_2(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + C_3H_5O_2^-(aq)$

b) To 100.0 mL of 0.150 M of the acid in part \underline{a} are added 0.96 g of $KC_3H_5O_2$ (MM = 96.0). Calculate the pH and % ionization of the acid. [4]

c) Calculate the pH of a solution made by mixing 250.0 mL of 0.20 M propanoic acid and 350.0 mL of 0.30 M sodium propanoate. **[4]**

- d) A 25.00 mL of a 0.20 M propanoic acid solution is titrated with 0.20 M solution of KOH.
 - i) Calculate the pH after you have added only 10.00 mL of the KOH solution to 25.00 mL of the acid. **[4]**

ii) Calculate the pH at the equivalence point in the titration of 25.00 mL of the acid with KOH. [4]

5. The pH of a 0.100 M NH₃(aq) is found to be 11.13. **[2]** NH₃(aq) + H₂O(l) \Leftrightarrow NH₄⁺(aq) + OH⁻(aq)

6. Thyroxine is a hormone that controls metabolism. A sample weighing 0.546 g was dissolved in 15.0 g of chloroform, and the freezing point depression was determined to be 0.240 °C. Calculate the molar mass of thyroxine. K_f of chloroform is 4.70 °C/m. **[4]**