1. Write K_c expressions for the following reactions:

a)
$$Si_3N_4(s) + 4 O_2(g) \implies 3 SiO_2(s) + 2 N_2O(g)$$

b) $SbCl_5(g) \implies SbCl_3(g) + Cl_2(g)$

- c) 2 HCN(g) + 6 H₂O(l) \implies 2 NH₃(g) + 2 CH₄(g) + 3 O₂(g)
- 2. At 25°C, the K_c for the reaction given below is 32.6.

 $6 \text{ ClO}_3\text{F(g)} \implies 2 \text{ ClF(g)} + 4 \text{ ClO(g)} + 7 \text{ O}_2(g) + 2 \text{ F}_2(g)$

What is K_c for:

$$\frac{1}{3} \operatorname{ClF}(g) + \frac{2}{3} \operatorname{ClO}(g) + \frac{7}{6} \operatorname{O}_2(g) + \frac{1}{3} \operatorname{F}_2(g) \longrightarrow \operatorname{ClO}_3F(g) \qquad \textbf{[0.559]}$$

3. 0.400 mole of H_2 and 1.60 mole of I_2 were placed in a 3.00 L flask and heated. At equilibrium, 60% of the H_2 had reacted. Calculate K_c for

$$H_2(g) + I_2(g) \implies 2 HI(g)$$

4. For the system:

 $2 \text{ HI(g)} = H_2(g) + I_2(g)$ $K_c = 0.016 \text{ at } 800 \text{ K}$

If 1.00 mole of HI is placed in a 10.0 L container and allowed to come to equilibrium, what will be the concentrations of all the gases at equilibrium? $[H_2] = [I_2] = 0.010 \text{ M}$, [HI] = 0.080 M

5. Sulfur trioxide decomposes according to the following reaction

 $2 \text{ SO}_3(g) \implies 2 \text{ SO}_2(g) + \text{O}_2(g)$

3.50 g of SO₃ was placed in an evacuated 1.00L flask at 100.0°C. At equilibrium 43.8% of the SO₃ had decomposed. Determine K_c for the equilibrium reaction. **[5.82 x 10**-³]

6. At a high temperature, 0.300 moles of CH₄ was placed in a 10.0 L reaction vessel and allowed to reach equilibrium.

 $2 \text{ CH}_4(g) \implies C_2 H_2(g) + 3 H_2(g)$

At equilibrium the concentration of C_2H_2 was measured to be 0.0130 mol/L. Determine the value of K_c. **[0.0482]**

7. For the equilibrium

2 HI(g) = H₂(g) +I₂(g) K_c = 2.5x10⁻³ at 800°C

0.80 mole of HI, 0.26 mole of H_2 , and 0.26 mole of I_2 were placed in a 2.0 L container at 800°C. Calculate the concentrations of all three gases at equilibrium. **[HI] = 0.60 M**, **[H₂] = [I₂] = 0.03 M**

8. The equilibrium constant, K_c, for the reaction

 $Br_2(g) + F_2(g) \implies 2 BrF(g)$

Is 55.3. What are the equilibrium concentrations of all the gases if the initial concentrations of Br_2 and F_2 were both 0.180 mol/L? [**Br**₂] = [**F**₂] = 0.038 M, [**BrF**] = 0.284 M

9. Bromine chloride, BrCl, a reddish gas with properties similar to Cl₂ is formed according to the reaction:
Cl₂(g) + Br₂(g) = 2 BrCl(g) K_c=4.7x10⁻²

What % of the chlorine has reacted at equilibrium if 1.00 mole of Cl_2 and 1.00 mole of Br_2 were placed in a 5.00 L flask and allowed to reach equilibrium? **[10%]**

10. When 0.40 mole of PCl_5 is placed in a 10.0 L container, an equilibrium is established in which 0.25 mole of Cl_2 is present. Calculate K_c for the following reaction. **[0.0417]**

 $PCl_5(g) \implies PCl_3(g) + Cl_2(g)$