CHEM-1 105

CHEMICAL EQUILIBRIUM

1. Write K_{c} expressions for the following reactions:
a) $\mathrm{Si}_{3} \mathrm{~N}_{4}(\mathrm{~s})+4 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{SiO}_{2}(\mathrm{~s})+2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$
b) $\mathrm{SbCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{SbCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
c) $2 \mathrm{HCN}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})$
2. At $25^{\circ} \mathrm{C}$, the K_{c} for the reaction given below is 32.6 .
$6 \mathrm{ClO}_{3} \mathrm{~F}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{ClF}(\mathrm{g})+4 \mathrm{ClO}(\mathrm{g})+7 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g})$
What is K_{c} for:
$\frac{1}{3} \mathrm{ClF}(\mathrm{g})+\frac{2}{3} \mathrm{ClO}(\mathrm{g})+\frac{7}{6} \mathrm{O}_{2}(\mathrm{~g})+\frac{1}{3} \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{ClO}_{3} \mathrm{~F}(\mathrm{~g})$
[0.559]
3. 0.400 mole of H_{2} and 1.60 mole of I_{2} were placed in a 3.00 L flask and heated. At equilibrium, 60% of the H_{2} had reacted. Calculate K_{c} for
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
4. For the system:
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=0.016$ at 800 K
If 1.00 mole of HI is placed in a 10.0 L container and allowed to come to equilibrium, what will be the concentrations of all the gases at equilibrium? $\left[\mathbf{H}_{2}\right]=\left[\mathbf{I}_{2}\right]=\mathbf{0 . 0 1 0} \mathbf{M},[\mathbf{H I}]=\mathbf{0 . 0 8 0} \mathbf{M}$
5. Sulfur trioxide decomposes according to the following reaction
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
3.50 g of SO_{3} was placed in an evacuated 1.00 L flask at $100.0^{\circ} \mathrm{C}$. At equilibrium 43.8% of the SO_{3} had decomposed. Determine K_{c} for the equilibrium reaction. [5.82 $\times \mathbf{1 0}^{-\mathbf{3}}$]
6. At a high temperature, 0.300 moles of CH_{4} was placed in a 10.0 L reaction vessel and allowed to reach equilibrium.
$2 \mathrm{CH}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
At equilibrium the concentration of $\mathrm{C}_{2} \mathrm{H}_{2}$ was measured to be 0.0130 $\mathrm{mol} / \mathrm{L}$. Determine the value of K_{c}. [0.0482]
7. For the equilibrium
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=2.5 \times 10^{-3}$ at $800^{\circ} \mathrm{C}$
0.80 mole of $\mathrm{HI}, 0.26$ mole of H_{2}, and 0.26 mole of I_{2} were placed in a 2.0 L container at $800^{\circ} \mathrm{C}$. Calculate the concentrations of all three gases at equilibrium. $[\mathbf{H I}]=\mathbf{0 . 6 0} \mathbf{M},\left[\mathbf{H}_{\mathbf{2}}\right]=\left[\mathbf{I}_{\mathbf{2}}\right]=\mathbf{0 . 0 3} \mathbf{M}$
8. The equilibrium constant, K_{c}, for the reaction

$$
\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \operatorname{BrF}(\mathrm{~g})
$$

Is 55.3. What are the equilibrium concentrations of all the gases if the initial concentrations of Br_{2} and F_{2} were both $0.180 \mathrm{~mol} / \mathrm{L}$?
$\left[\mathrm{Br}_{2}\right]=\left[\mathrm{F}_{2}\right]=0.038 \mathrm{M},[\mathrm{BrF}]=0.284 \mathrm{M}$
9. Bromine chloride, BrCl , a reddish gas with properties similar to Cl_{2} is formed according to the reaction:
$\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrCl}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=4.7 \times 10^{-2}$
What \% of the chlorine has reacted at equilibrium if 1.00 mole of Cl_{2} and 1.00 mole of Br_{2} were placed in a 5.00 L flask and allowed to reach equilibrium? [10\%]
10. When 0.40 mole of PCl_{5} is placed in a 10.0 L container, an equilibrium is established in which 0.25 mole of Cl_{2} is present. Calculate K_{c} for the following reaction. [0.0417]
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

