CHEM-1105

1. A sample of $\mathrm{H}_{2} \mathrm{~S}$ gas occupies 32.1 L at $50.0^{\circ} \mathrm{C}$ and $730 . \mathrm{mmHg}$. Calculate the volume of the gas at STP. (26.1L)
2. A sealed container containing methane gas at $730 . \mathrm{mmHg}$ and $27.0^{\circ} \mathrm{C}$ is put into a box cooled with "dry ice" $\left(-78^{\circ} \mathrm{C}\right)$. What pressure the gas would exert under these conditions? ($475 \mathbf{~ m m H g}$)
3. Calculate the density of $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$
a) at $\operatorname{STP}(1.96 \mathrm{~g} / \mathrm{L})$
b) at 729 mmHg and $25.0^{\circ} \mathrm{C}$. $(\mathbf{1 . 7 3 g} / \mathrm{L})$
4. If 0.670 g vapor of a compound at $100 .{ }^{\circ} \mathrm{C}$ and 735 torr has a volume of 249 mL , what is the molar mass of the compound? ($85.2 \mathrm{~g} / \mathrm{mol}$)
5. A compound containing 21.4 \% silicon, 24.4% sulfur, and 54.2% chlorine is vaporized. 5.00 g of the vapor is found to occupy 854 mL at STP. Calculate the empirical and molecular formulas of the compound. ($\mathbf{S i S C l}_{2}$)
6. In 1897 the Swedish explorer Andree tried to reach the North Pole in a balloon. The balloon was filled with hydrogen gas. The hydrogen gas was prepared from iron splints and diluted sulfuric acid. The reaction is

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

The volume of the balloon was $4800 \mathrm{~m}^{3}$ and the loss of H_{2} gas during filling was estimated at 20. What mass of iron and 98% (by mass) $\mathrm{H}_{2} \mathrm{SO}_{4}$ were needed to ensure the complete filling of the balloon at STP. ($\mathbf{1 . 5 x 1 0 7} \mathbf{g ~ F e , ~} \mathbf{2 . 6 \times 1 0 7} \mathbf{g ~ 9 8 \%} \mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$)
7. A low pressure can be achieved easily with a vacuum pump. Calculate the number of molecules present in 1.00 mL of a gas at 273 K and pressure of 1.00×10^{-6}. ($\mathbf{3 . 5 3 \times 1 0 ^ { 1 0 }} \mathbf{~ m o l e c u l e s)}$
8. $\mathrm{KClO}_{3}(\mathrm{~s})$ decomposes according to the reaction

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

A white solid is known to be a mixture of only KClO_{3} and KCl . 7.0950 g of this solid mixture produced 865.5 mL of $\mathrm{O}_{2}(\mathrm{~g})$. The gas
was collected over water at a pressure of 741.5 torr and a temperature of $27.0^{\circ} \mathrm{C}$. Calculate the percent of KCl , by mass, in the mixture. ($\mathbf{6 2 . 0} \% \mathbf{K C l}$)
9. Laughing gas, $\mathrm{N}_{2} \mathrm{O}$, one of the first anesthetics used by the dental profession is made by the decomposition of ammonium nitrate.

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

How many grams of ammonium nitrate must be decomposed to prepare 350 mL of $\mathrm{N}_{2} \mathrm{O}$ at STP ? ($\mathbf{1 . 2 5} \mathbf{~ g ~} \mathbf{N H}_{\mathbf{4}} \mathbf{N O}_{\mathbf{3}}$)
10. A 500 mL flask contains $\mathrm{O}_{2}(\mathrm{~g})$ at 1 atm. Another flask, 1500 mL , contains $\mathrm{N}_{2}(\mathrm{~g})$ at 360 torr. Both the flasks are connected by a tube and stopcock. The stopcock is opened and the gases are mixed. The temperature remains constant. Calculate the partial pressure of each gas and the total pressure. Calculate the mole fraction of $\mathrm{O}_{2}(\mathrm{~g}) .\left(\mathbf{p p} \mathrm{O}_{2}=190\right.$ torr, $\mathbf{p p} \mathbf{N}_{\mathbf{2}}=\mathbf{2 7 0}$, Ptotal $=460$ torr, X of $\mathrm{O}_{2}=0.413$)
11. Consider the reaction

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

If all the gases are mixed under the same conditions of temperature and pressure, what is the volume of products from the reaction of $2.5 \mathrm{~L} \mathrm{NH}_{3}$ and $10.0 \mathrm{~L}^{2}$ of O_{2} ? (6.25 L of products)
12. A method of removing $\mathrm{CO}_{2}(\mathrm{~g})$ from a spacecraft is to allow CO_{2} to react with LiOH . What volume of $\mathrm{CO}_{2}(\mathrm{~g})$ at $24.8^{\circ} \mathrm{C}$ and 746 torr can be removed per kilogram of LiOH? (521 L CO2)

$$
2 \mathrm{LiOH}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

13. Air bags are activated when a severe impact causes a steel ball to compress a spring and electrically ignite a detonator cap. This action causes sodium azide, NaN_{3}, to decompose explosively according to the following reaction:

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

What mass of $\mathrm{NaN}_{3}(\mathrm{~s})$ must be reacted to inflate an air bag to 70.0 L at STP? (135 g)

