1. A 46.2 g sample of copper is heated to $95.4^{\circ} \mathrm{C}$ and then placed in a calorimeter containing 75.0 g water at $19.6^{\circ} \mathrm{C}$. The final temperature of the metal and water is $21.8^{\circ} \mathrm{C}$. Calculate the specific heat of copper, assuming that all the heat lost by the copper is gained by water.

## ( $0.203 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ )

2. In a coffee-cup calorimeter, 100.0 mL of 1.0 M NaOH and 100.0 mL of 1.0 M HCl are mixed. Both solutions were originally at $24.6^{\circ} \mathrm{C}$. After the reaction, the final temperature is $31.3^{\circ} \mathrm{C}$. Assuming that all the solutions have a density of $1.0 \mathrm{~g} / \mathrm{mL}$ and a specific heat of $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, calculate the enthalpy change for the neutralization of HCl by NaOH .

## (-56.1kJ/mol)

3. Consider the reaction

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-118 \mathrm{~kJ}
$$

Calculate the heat when 100.0 mL of 0.500 M HCl is mixed with 300.0 mL of $0.500 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$. Calculate the final temperature of the mixture assuming that the initial temperature was $25.0^{\circ} \mathrm{C}$. $\left(\mathbf{2 6 . 7 6}{ }^{\circ} \mathrm{C}\right)$
4. The bombardier beetle uses an explosive discharge as a defensive measure. The chemical reaction involved is the oxidation of hydroquinone by hydrogen peroxide to produce quinone and water.

$$
\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Calculate $\Delta H^{\circ}$ for the reaction from the following data: (-203 kJ)

$$
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=+177.4 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) & \Delta \mathrm{H}^{\mathrm{o}}=-191.2 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=-483.6 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}^{\mathrm{o}}=-43.8 \mathrm{~kJ}
\end{array}
$$

5. A 0.1964 g sample of quinone, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$, is burned in a bomb calorimeter that has a heat capacity of $1.56 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. The temperature of the calorimeter increases by $3.2^{\circ} \mathrm{C}$. Calculate the energy of combustion of quinone per mole. (-2745kJ/mol)
6. Use $\Delta \mathrm{H}_{\mathrm{f}}$ data to
a) calculate the enthalpy change for the reaction: $(\mathbf{- 1 3 6 7} \mathbf{k J})$

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

b) calculate $\Delta \mathrm{H}^{\circ}$ of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$ and the following information: ( $\mathbf{1 0 4} \mathbf{k} \mathbf{J}$ )

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-2220 \mathrm{~kJ}
$$

7. Write a balanced thermochemical equation depicting the formation of the following substances.
a) $\mathrm{CH}_{3} \mathrm{OH}(1)$
b) $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$

For the following problems assume that specific heat and density of the solution is same as that for water.
8. When a $4.25 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$ dissolves in 60.0 mL of water in a coffee-cup calorimeter, the temperature drops from $22.0^{\circ} \mathrm{C}$ to $16.9^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ for ( $\mathbf{+ 2 5 . 8 k J} / \mathbf{m o l}$ )
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{3}-(\mathrm{aq})$
9. Suppose you place 0.500 g of Mg in a coffee-cup calorimeter and then add 100.0 mL of 1.00 M HCl . That reaction occurs

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Calculate $\Delta \mathrm{H}$ if the temperature of the solution changes from $22.2^{\circ} \mathrm{C}$ to $44.8^{\circ} \mathrm{C}$. $(-462 \mathrm{~kJ} / \mathrm{mol})$
10. 50.0 mL of 1.00 M HCl is mixed with 50.0 mL of 1.00 M NaOH . The temperature of the solution changes from $21.0^{\circ} \mathrm{C}$ to $27.5^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$. (-54.4 kJ/mol)

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

