CHEM-1110 TEST \# 1 NAME
Sept. 25, 2002
SHOW ALL WORK. MESSY AND UNORGANIZED WORK WILL NOT BE MARKED. STRICT ADHERENCE TO INDEPENDENT WORK.

1. For the following equation:

$$
\begin{aligned}
\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{~s})+6 \mathrm{NaCl}(\mathrm{~s})+7 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow & 3 \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{Cr}(\mathrm{SO} 4)_{3}(\mathrm{aq}) \\
& +4 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

a) If a total of 6.41 g of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{MM}=262.00)$ is added to 7.68 g of $\mathrm{NaCl}(\mathrm{MM}=58.45)$ and an excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$, a total of 3.44 g of Cl_{2} ($\mathrm{MM}=70.90$) was isolated. Determine the percent yield of the reaction and the mass of the excess reagent left over at the end of the reaction. [8]
2. A 500.0 mg tablet containing antacids plus inert material was dissolved in 50.00 mL of 0.5000 M HCl . The resulting solution required 26.50 mL of 0.3770 M NaOH for neutralization.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH} \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a) How many moles of OH^{-}were in the tablet? [5]
b) If the tablet contained equal masses of $\mathrm{Al}(\mathrm{OH})_{3}$ and $\mathrm{Mg}(\mathrm{OH})_{2}$, what is the percent, by mass, of each hydroxide in the tablet? [6]
3. A 5.00 g mixture of zinc and aluminum was reacted with $\mathrm{HCl}(\mathrm{aq})$. 3.78 L of hydrogen gas produced was collected over water at $22.0^{\circ} \mathrm{C}$ and 760.0 mmHg . Vapor pressure of water at $22.0^{\circ} \mathrm{C}=19.8$ mmHg . The reactions are:

$$
\begin{gathered}
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \\
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
\end{gathered}
$$

Calculate the percent by mass of zinc in the original mixture. [8]
4. The density of xylene, a compound containing only carbon and hydrogen is $4.74 \mathrm{~g} / \mathrm{L}$ at STP. In another experiment, combustion of 5.00 g of xylene gave 16.60 g of CO_{2}. Calculate the molecular formula of xylene. [5]
5. A sample of a sulfide of metal M (formula $M_{x} S_{y}$) is analyzed. The sulfur in the system is recovered as 120.0 mL of $0.250 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}$ solution. The metal in the same sample is recovered as 40.0 mL of 0.500 M solution of the metal ion. The molar mass of the sulfide of the metal is $150.3 \mathrm{~g} / \mathrm{mol}$. Find the formula of the metal sulfide and identify M. [5]
6. A miniature laboratory volcano can be made from ammonium dichromate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. When ignited it decomposes in a fiery display. The reaction is:

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{~s}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

If the decomposition of 5.00 g of ammonium dichromate is done and gases are trapped in a 2.00 L flask at $27^{\circ} \mathrm{C}$, what is the total gaseous pressure and the partial pressures of gases? [6]
7. Write balanced equations for the following nuclear reactions. [6]
a) $\mathrm{Pb}-204$ emits an alpha particle.
b) Se-73 emits a positron.
c) An atom of plutonium-239 is bombarded by a neutron, splitting into atom of Iodine-135, 4 neutrons, plus another element.
d) An atom of Beryllium-9 collides with an atom of americium-242 to produce a new element and three neutrons.
e) Pa-234 emits a beta particle.
f) Indium-110 undergoes electron capture.
8. The nuclide ${ }^{210} \mathrm{Po}$ (atomic mass $=209.9829 \mathrm{amu}$) decays by alpha decays to ${ }^{206} \mathrm{~Pb}$ (atomic mass $=205.9745 \mathrm{amu}$). Mass of alpha particle is 4.0026 amu' mass of a proton $=1.007276 \mathrm{amu}$, mass of a neutron $=1.008665 \mathrm{amu}$, and mass of an electron $=0.00055$ amu. $1 \mathrm{amu}=931.5 \mathrm{MeV}$. Calculate the average binding energy for ${ }^{210} \mathrm{Po}$. [4]

