CHEM-1110 TEST \# 1 FEB. 28,2002
PLEASE BE VERY NEAT. MESSY WORK WILL BE IGNORED.

1. Draw structres for the following. Show all bonds on carbon atoms.
a) cis-2,5-dichloro-3-hexene
b) 4-phenyl-6-isopropyl-4-octanol

Or 4-phenyl-6-1-methylethyl-4-octanol
c) 5-ethyl-6,6-dimethyl-2-nonyne
d) tert-butyl isobutyl ether
or 1,1-dimethylethyl 2-methylpropyl ether
e) p-bromophenol
f) 2-ethyl-4-isopropylcyclopentanol
g)4,5-diethyl-2-methylheptanal
h) 4,4-dimethyl-1,6-octadiene
i) m-nitrobenzaldehyde
j) 3,5-dinitromethylbenzene
2. Name the following, using IUPAC or other reasonably acceptable names.
a)

b) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \stackrel{\text { II }}{\mathrm{C}}-\mathrm{OH}$
C)

d)

e)

f)

3. a) Draw the structures for the 4 structural isomers of $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ that contain a four-membered cyclic ring and an alcohol. Label your structures using letters or numbers.
b) Indicate which of the $\mathbf{4}$ structural isomers can have geometric (cis-trans) isomers.
c) Indicate which of the 4 structural isomers can have optical isomers and label all chiral carbon atoms with an asterisk.
4. Draw the structural formula for an unsaturated alkyl chloride of molecular formula $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Cl}$ that shows
a) neither geometric nor optical isomers.
b) both geometric and optical isomers. Mark chiral C with a*.
c) geometric but not optical isomers.
d) optical but not geometric isomers. Mark chiral C with a star.
5. Write the structure of an alkane, $M M=72$, that would yield three monochloro derivatives on chlorination.
6. Write the structure of an alkene that on oxidation with hot and conc. KMnO_{4} would yield 2-pentanone and CO_{2}.
7. Draw the structure(s) for the main organic product(s)for the following reactions.

b)
 $\xrightarrow[\text { heat }]{\text { conc } \mathrm{H}_{2} \mathrm{SO}_{4}}$
c)
$\underset{\mathrm{KMnO}_{4}}{\text { hot conc }} \quad$ 1,4-dipropylbenzene $+\mathrm{Br}_{2} \xrightarrow{\mathrm{FeBr}_{3}}$
d)

e) 2-chloropentanoic acid + 2-fluoro-1-butanol $\xrightarrow{\mathrm{H}^{+}}$
f) 2-methyl-1,4-pentanediol $\xrightarrow{\mathrm{KMnO}_{4}}$
g)

8. Using the formula $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}$, provide structures to satisfy each of the following requirements:
a) a compound which will react with both Na and $\mathrm{H}_{2} / \mathrm{Pt}$.
b) a compound which will react with KMnO_{4} but not Na
c) a compound which will react with $\mathrm{H}_{2} / \mathrm{Pt}$ but not KMnO_{4}
9. How would you prepare isopropyl propanoate (1-methylethyl propanoate) starting with only 1-propanol? Inorganic reageants are available.
10. In the dichlorination of propane four products with the formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$ were isolated and labeled $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D}. Each was separated and further chlorinated to give one or more trichlorinated propanes, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}_{3}$. A and \mathbf{B} gave three, \mathbf{C} gave one, and \mathbf{D} gave two. Give the structures for \mathbf{C} and \mathbf{D}. One of the products from \mathbf{A} was identical with the product from \mathbf{C}. Give the structure for \mathbf{A} and \mathbf{B}.

