CHEM-1110

GASES

1. A sample of hydrogen sulfide gas was collected in a 250 mL flask at a pressure of 740 mm Hg and $37^{\circ} \mathrm{C}$. What volume would it occupy at 3.65 atm and 313 K ?
(67.3 mL)
2. A certain gas was found to have a density of $2.94 \mathrm{~g} / \mathrm{L}$ at $150^{\circ} \mathrm{C}$ and a pressure of 720 torr. What is the molar mass of the gas? (108 $\mathrm{g} / \mathrm{mol}$)
3. Find the density of $\mathrm{N}_{2} \mathrm{O}$ at
a) STP
$(1.96 \mathrm{~g} / \mathrm{L})$
b) $27^{\circ} \mathrm{C}$ and 748 torr
($1.76 \mathrm{~g} / \mathrm{L}$)
4. An organic compound contains C, H, N, and O. Combustion of 0.1023 g of the compound yielded 0.2766 g of CO_{2} and 0.0991 g of $\mathrm{H}_{2} \mathrm{O}$.
Use this information to find \%, by mass, of C and H .

$$
\text { (} 73.74 \% \mathrm{C}, 10.76 \% \mathrm{H} \text {) }
$$

Another sample of the compound weighing 0.4831 g yielded 27.6 mL of N_{2} gas at STP. Use this data to find $\% \mathrm{~N}$ by mass. (7.14\% N)

In a third experiment, density of the compound as a gas was found to be $4.02 \mathrm{~g} / \mathrm{L}$ at 400 K and 256 mmHg . Calculate molar mass of the gas.
(392g/mol)
What are the empirical formula and the molecular formula of the above compound?

$$
\left(\mathrm{MF}=\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2}\right)
$$

5. Pressures of $10^{-6} \mathrm{~mm} \mathrm{Hg}$ are easily attainable in high vacuum systems in research labs. Calculate the number of molecules present per millilitre at $0^{\circ} \mathrm{C}$ and this pressure.
(3.53×10 ${ }^{10}$ molecules $/ \mathrm{mL}$)
6. A 2.92 g sample of a $\mathrm{KCl}-\mathrm{KClO}_{3}$ mixture is decomposed by heating. 89.8 mL of $\mathrm{O}_{2}(\mathrm{~g})$ is collected by displacement of water at a temperature of $22^{\circ} \mathrm{C}$ and 727 mmHg . What is the mass percent of KCl in the mixture? The reaction is

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

7. The explosive decomposition of nitroglycerin is given by the reaction $4 \mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{l}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+6 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a) If the energy released during the explosion heated the reaction products to $2500{ }^{\circ} \mathrm{C}$, what pressure must a 1.000 L container be able to withstand so that 5.00 g of nitroglycerin would not rupture it? (36.4 atm)
b) Calculate the partial pressure of each of the gases produced in part (a)

$$
\left(\mathrm{CO}_{2}=15.1, \mathrm{H}_{2} \mathrm{O}=12.6, \mathrm{~N}_{2}=7.53, \text { and } \mathrm{O}_{2}=1.26\right)
$$

8. A 3.0 L bulb containing He at 145 mm Hg is connected by a valve of negligible volume to a 2.0 L bulb containing Ar at 0.50 atm . Calculate the partial pressure of each gas and the total pressure after the valve between the bulbs is opened. Assume the temperature remains constant.
($\mathrm{He}=87.0, \mathrm{Ar}=152$ and total pressure is 239 mmHg)
9. If an unknown gas effuses at a rate that is only 0.468 times that of O_{2} at the same temperature, what is its molar mass? $\quad(146 \mathrm{~g} / \mathrm{mol})$
10. Calculate the molecular mass of a gas if a given volume of the gas effuses through an apparatus in 300 s and the same volume of $\mathrm{CH}_{4}(\mathrm{~g})$, under the same conditions of temperature and pressure, effuses through the same apparatus in 219 s? $(30.0 \mathrm{~g} / \mathrm{mol})$
11. Consider a mixture of 3 gases: A, B, and C, enclosed in a container at a total pressure of 4 atm. The following is given:
-the mole fraction of gas $\mathrm{A}=0.30$
-the total number of moles $=60$ moles
-gas C is in fact 792.2 g of $\mathrm{CO}_{2}(\mathrm{~g})$
Find the partial pressure of gas B.
12. Dinitrogen monoxide, which is usually called nitrous oxide, is used as an anasthetic and as a propellant gas in whipped cream dispensers. It is made by heating ammonium nitrate. What mass of ammonium nitrate is required to produce 3.50 L of $\mathrm{N}_{2} \mathrm{O}$ gas at $255^{\circ} \mathrm{C}$ and 1.00 atm ? (6.46g)
