# KWANTLEN UNIVERSITY COLLEGE 

CHEMISTRY 0094 S-11
EXAM No. 1
January 31, 2002

## NAME:

$\qquad$

Instructions: This exam contains Thirteen questions. Read the exam carefully and judge your time accordingly. ALL CALCULATIONS MUST BE SHOWN TO RECIEVE ANY CREDIT! If you need extra space, use the back of a preceeding page and clearly indicate the question number. Maximum Score: 89 points

| 1 |  |
| ---: | ---: |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| Total |  |

Question One: (4 MARKS)
Indicate the number of significant figures for each of the following measured quantities.
a) 0.00524 cm
b) 300.00 g
c) $2.2 \times 10^{7} \mathrm{~m}$
d) 124 L

Question Two: (6 MARKS)
Express the result of each of the following calculations to the correct number of significant figures.
(Give the correct units in your answer)
a) $5.17 \times 10^{-3} \mathrm{~m}+1.7 \times 10^{-3} \mathrm{~m}+6.071 \times 10^{-2} \mathrm{~m}=$
b) $(0.00630 \mathrm{~cm})(2.003 \mathrm{~cm})(200.0 \mathrm{~cm})=$
c) $\frac{236.45 \mathrm{~g}-1.3 \mathrm{~g}}{(3.4561 \mathrm{~cm})(32.675 \mathrm{~cm})}=$

## Question Three: (13 MARKS)

Perform the following conversions: (Express your answer to the correct number of significant figures.)
a) 752 cm to km (2)
b) $4.01 \mathrm{~mm}^{2}$ to $\mathrm{m}^{2}$

## Question Three: (Continued)

c) 77.2 kPa to $\mathrm{psi}\left(14.7 \mathrm{psi}=1 \mathrm{~atm} ; 1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}\right) \quad$ (3)
d) During earlier times in England, land was measured in units such as fardells, nookes, yards, and kides: 2 fardells $=1$ nooke 4 nookes $=1$ yard

4 yards = 1 kide .
Determine the following:
i) the number of fardells in 4.54 nookes.
ii) the number of fardells in 6.00 kides. (3)

## Question Four: (8 MARKS)

a) Helium has the lowest boiling point of any liquid. It boils at $-268.6^{\circ} \mathrm{C}$. What is its boiling point in both K and ${ }^{\circ} \mathrm{F}$ ? (4)
b) The temperature in Tucson, Arizona reached $113^{\circ} \mathrm{F}$ on a hot summers day. What would this temperature be in both ${ }^{\circ} \mathrm{C}$ and K ?

## Question Five: (6 MARKS)

a) A rectangular bar of gold measuring 5.00 cm by 10.0 cm by 8.00 cm has a mass of 7.720 kg . Calculate the density of gold in $\mathrm{g} / \mathrm{cm}^{3}$.
(2)
b) A piece of metal with an irregular shape weighing 20.32 g is added to a flask with a volume of $24.5 \mathrm{~cm}^{3}$. It is found that 18.52 g of water (density $=1.00 \mathrm{~g} / \mathrm{cm}^{3}$ ) must be added to the flask containing the metal in order to completely fill the flask.
i) Determine the volume of the metal.
(2)
ii) Determine the density of the metal. (2)

## Question Six: (3 MARKS)

Determine the amount of heat (in kJ ) necessary to raise the temperature of 58.8 g of aluminum from 15.0 ${ }^{\circ} \mathrm{C}$ to $75.0^{\circ} \mathrm{C}$. (specific heat of aluminum $=0.910 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ )

Question Seven: (14 MARKS)
Give the names of the following elements:
a) S -
b) $\mathrm{Br}-$
c) Ar -
d) $\mathrm{Pb}-$
e) $\mathrm{Ca}-$
f) B -
g) Mg -

## Question Eight: (14 MARKS)

Write the chemical symbols for each of the following elements:
a) sodium -
b) silver -
c) lithium -
d) phosphorus
e) mercury -
f) $\operatorname{tin}-$
g) iron -

Question Nine: (4 MARKS)
Define and distinguish the differences between the following: (Be concise!)
a) an element and a compound.
b) accuracy and precision of measured quantities.

Question Ten: (4 MARKS)
The following data refer to the element sodium. Classify each as either a physical ( $\mathbf{P}$ ) or chemical (C) property.
a) Its boiling point is $892^{\circ} \mathrm{C}$. $\qquad$
b) It reacts violently with water producing a gas which ignites.
c) Sodium has a silvery metallic luster. $\qquad$
d) Its density is $0.97 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$. $\qquad$

## Question Eleven: (4 MARKS)

Classify each of the following as either a physical ( $\mathbf{P}$ ) or a chemical ( $\mathbf{C}$ ) change.
a) A fresh egg is hard-boiled. $\qquad$
b) A bar of pure iron is melted in a crucible. $\qquad$
c) A teaspoon of sugar is dissolved in a cup of hot water. $\qquad$
d) Grape juice is fermented to produce wine. $\qquad$

## Question Twelve: (5 MARKS)

Classify each of the following as an element (A), a compound (B), a homogeneous mixture (C), or a heterogeneous mixture (D).
a) copper
b) garden soil
c) glucose (a sugar)
d) Vinegar (acetic acid dissolved in water)
e) oxygen gas

Question Thirteen: (4 MARKS)
Consider the following experimental data:

| $\mathbf{X}$ | -1.00 | 5.00 | 9.00 | 16.0 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\mathbf{Y} & -2.63 & 0.523 & 0.291 & 0.164\end{array}$
Are $\mathbf{X}$ and $\mathbf{Y}$ related by a direct proportionality, an inverse proportionality, or neither? (Show calculations used to determine this.)

