KWANTLEN UNIVERSITY COLLEGE
 CHEMISTRY 0094 S-11
 EXAM No. 1
 January 31, 2002

ANSWER KEY

Question One:

a) 3 sig. figs.
b) 5 sig. figs
c) 2 sig. figs.
d) 3 sig. figs.

Question Two:

a) $6.76 \times 10^{-2} \mathrm{~m}$
b) $2.52 \mathrm{~cm}^{2}$
c) $2.082 \mathrm{~g} / \mathrm{cm}^{3}$

Question Three:

b) $4.01 \mathrm{~mm}^{2} \mathrm{x}(1 \mathrm{~m} / 1000 \mathrm{~mm})^{2}=4.01 \times 10^{-6} \mathrm{~m}^{2}$

d)
i) 4.54 nooks $\mathrm{x} \underset{1 \text { nooke }}{2 \text { fardells }} \begin{aligned} & ------08 \text { fardells } .\end{aligned}=9.0$

Question Four:

a) $\mathrm{t}(\mathrm{K})=\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)+273.1=-268.6+273.1=4.5 \mathrm{~K}$

$$
\begin{aligned}
\mathrm{t}\left({ }^{\circ} \mathrm{F}\right) & =1.80 \times \mathrm{t}\left({ }^{\circ} \mathrm{C}\right)+32 \\
& =1.80 \times(-268.6)+32=-451.5^{\circ} \mathrm{F}
\end{aligned}
$$

$\mathrm{t}(\mathrm{K})=\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)+32=45+273.1=318 \mathrm{~K}$

Question Five:

a) Volume $=1 \times \mathrm{x} \times \mathrm{h}=5.00 \mathrm{~cm} \times 10.0 \mathrm{~cm} \mathrm{x} 8.00 \mathrm{~cm}=400 . \mathrm{cm}^{3}$

$$
\begin{aligned}
& 1000 \mathrm{~g} \\
& \text { Mass }=7.720 \mathrm{~kg} \times \frac{\mathrm{xg}}{1 \mathrm{~kg}}=7.720 \times 10^{3} \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume of Metal } & =\text { Volume of Flask }- \text { Volume of Water Added } \\
& =24.5 \mathrm{~cm}^{3}-18.52 \mathrm{~cm}^{3}=6.0 \mathrm{~cm}^{3}
\end{aligned}
$$

ii) Density of Metal $=\begin{aligned} & \text { Mass of Metal } \\ & \text { Volume of Metal }\end{aligned}=\begin{aligned} & 20.32 \mathrm{~g} \\ & -------------\mathrm{cm}^{3}\end{aligned}=3.4 \mathrm{~g} / \mathrm{cm}^{3}$

Question Six:

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{m}_{\mathrm{Al}} \mathrm{~s}_{\mathrm{Al}} \Delta \mathrm{~T}_{\mathrm{Al}} \\
& =(58.8 \mathrm{~g})\left(0.910 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)\left(75.0^{\circ} \mathrm{C}-15.0^{\circ} \mathrm{C}\right)=3.21 \mathrm{~kJ}
\end{aligned}
$$

Question Seven:

a) sulfur
b) bromine
c) argon
d) lead
e) calcium
f) boron
g) magnesium

Question Eight:

a) Na
b) Ag
c) Li
d) P
e) Hg
f) Sn
g) Fe

Question Nine:

a) Element - A substance that cannot be decomposed into simpler substances by ordinary chemical or physical means.

Compound - A pure distinct substance that is composed of two or more elements and always contains the same relative masses of those elements.
b) Accuracy - the agreement of a particular measured value with the true or excepted value.

Precision - the degree of agreement amoung several measurements of the same quantity, i.e. the reproducibility of a measurement.

Question Ten:

a) Physical property
b) Chemical property
c) Physical property
d) Physical property

Question Eleven:

a) Chemical change
b) Physical change
c) Physical change
d) Chemical change

Question Twelve:

a) Element
b) Heterogenous mixture
c) Compound
d) Homogeneous mixture
e) Element

Question Thirteen:

\mathbf{X} and \mathbf{Y} cannot be related by a direct proportionality, since \mathbf{Y} does not increase when \mathbf{X} increases. If \mathbf{X} and \mathbf{Y} are related by an inverse proportionality, then
$\mathbf{Y}=\begin{aligned} & \mathbf{C} \\ & -- \\ & \mathbf{X}\end{aligned} \quad$ or $\mathbf{C}=\mathbf{X Y}$, where \mathbf{C} is a constant.

\mathbf{X}	-1.00	5.00	9.00	16.0

\mathbf{Y}	-2.63	0.523	0.291	0.164

C	2.63	2.62	2.62	2.62

Since \mathbf{C} is a constant \mathbf{X} and \mathbf{Y} are inversely proportional.

