KWANTLEN COLLEGE
CHEMISTRY 1105 R-10
EXAM No. 1
July 21, 1994

NAME: \qquad

Instructions: This exam contains NINE + 1 BONUS questions. Read the exam carefully and judge your time accordingly. ALL CALCULATIONS MUST BE SHOWN TO RECEIVE FULL CREDIT ! If you need extra space, use the back of a preceeding page and clearly indicate the question number. A periodic chart is supplied with this exam.
Maximum Score: 75+(4 bonus) points
"If a little knowledge is dangerous, where is the person who has so much as to be out of danger?."

Thomas Henry Huxley

USEFUL INFORMATION

Avagadro's Number, $\mathrm{N}_{\mathrm{o}}=6.022 \times 10^{23}$
Gas Constant, $\mathrm{R}=0.0821 \mathrm{Latm} / \mathrm{Kmol}$
Pressure: $1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=101.325 \mathrm{kPa}=760 \mathrm{torr}=14.70 \mathrm{lb} / \mathrm{in}^{2}$

Question One: (4 MARKS)

Diamonds (density $=3.51 \mathrm{~g} / \mathrm{cm}^{3}$) are commonly measured in carats (1 carat $=200 . \mathrm{mg}$). What is the volume, in mm^{3}, of a 2.00 carat diamond? (Express your answer to the correct number of significant figures) (Remember a diamond is only carbon!)

Question Two: (11 MARKS)

a) For the species ${ }^{120} \mathrm{Sn}^{2+}$ indicate the following:
number of protons \qquad , number of electrons \qquad and
number of neutrons \qquad in one ion. (3)
b) Write the complete nuclear symbol, including atomic number, mass number, and charge (if any), for the species with 46 neutrons, 36 electrons, and a mass number of 80 . (4)
c) A certain element consists of three isotopes. Given below are the mass and natural abundance of each isotope. (4 Marks)

Isotope	Mass (amu)	
\#1	27.9769	92.21
$\# 2$	28.9765	4.70
$\# 3$	29.9738	3.09

i) Calculate the atomic weight of the element.
ii) Identify the element by symbol and name.

Question Three: (10 MARKS)

a) Write the formula for each of the following compounds. (5)
i) lithium oxide
ii) aluminum hydroxide
iii) magnesium chlorate
iv) hydrocyanic acid
v) lead(iv) sulfate
b) Give the proper (IUPAC) names for each of the following compounds. (5)
i) $\mathrm{Ca}_{2} \mathrm{C}$
ii) $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
iii) $\mathrm{HNO}_{2}(\mathrm{aq})$
iv) $\mathrm{P}_{4} \mathrm{O}_{6}$
v) $\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$

Question Four: (7 MARKS)
a) Balance the following equation: (3)
$\ldots \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{g})+\ldots \mathrm{O}_{2}(\mathrm{~g})--->\ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
b) Write the net ionic equation for the following reaction. (4)
$2 \mathrm{~K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})--->6 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$

Question Five: (10 MARKS)
Eugenol (responsible for the aromatic odor of cloves), contains only carbon, hydrogen, and oxygen.
a) In a combustion analysis, 3.284 g of eugenol was completely burned in the presence of excess oxygen, and produced 8.802 g of CO_{2} and 2.162 g of $\mathrm{H}_{2} \mathrm{O}$. Calculate the empirical formula of eugenol. (8)
b) The molar mass of eugenol was determined to be approximately $160 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula of eugenol. (2)

Question Six: (8 MARKS)

The burning of ammonia, NH_{3}, is an important first step in the industrial process to make nitric acid. The reaction is:
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})$---> $4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If 100.0 g of ammonia are mixed with 150.0 g of oxygen and reacted, calculate the following:
a) the theoretical yield of NO (in grams) (5)
b) the mass of the excess reactant left over. (2)
c) If 100.0 g of NO were recovered from the reaction, what is the percent yield of NO ? (1)

Question Seven: (5 MARKS)

The calcium carbonate carbonate content of a mixture can be analyzed by titrating the sample with $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution. The reaction is

$$
3 \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})--->\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{aq})+3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(The formula weights are: $\mathrm{CaCO}_{3}=100.1 ; \mathrm{H}_{3} \mathrm{PO}_{4}=98.00 ; \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=310.2$;

$$
\left.\mathrm{CO}_{2}=44.01 ; \mathrm{H}_{2} \mathrm{O}=18.02\right)
$$

The CaCO_{3} content of a 20.25 g sample of limestone was completely reacted by the addition of 85.10 mL of $1.379 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$. Determine the percent purity of CaCO_{3} in the the limestone sample. (Assume that the other contaminants do not react in this analysis)

Question Eight: (5 MARKS)

a) Calculate the volume of 0.275 M HI needed to give 50.0 mL of 0.150 M HI on dilution. (2)
b) What mass of KCl would be required to prepare 375 mL of a 0.870 M KCl solution? (3)

Question Nine: (15 MARKS)

a) A helium filled balloon having a volume of 15.2 L at 1.20 atm and $25.0^{\circ} \mathrm{C}$ is allowed to rise to the stratosphere (about 30 km above the earth), where the temperature and pressure are $-23.0^{\circ} \mathrm{C}$ and $3.00 \times 10^{-3} \mathrm{~atm}$, respectively. Calculate the final volume of the balloon. (4)
b) An unknown gas has a density of $1.61 \mathrm{~g} / \mathrm{L}$ at a temperature of $23.4^{\circ} \mathrm{C}$ and a pressure of 745 mm Hg. Determine its molecular weight (molar mass). (6)
c) The equation for the metabolic breakdown of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is the same as that for the combustion of glucose in air:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})--->6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Calculate the volume of $\mathrm{CO}_{2}(\mathrm{~g})$ produced at $37.0^{\circ} \mathrm{C}$ and 1.00 atm when 5.60 g of glucose is used up in the reaction with excess oxygen. (molar mass of glucose $=180.2 \mathrm{~g} / \mathrm{mol})(5)$

BONUS (4 MARKS)

Analysis of a metal chloride XCl_{3} shows that it contains $67.2 \% \mathrm{Cl}$ by mass. Calculate the atomic mass and identify the element " X ".

