KWANTLEN COLLEGE
 CHEMISTRY 1105 R-10
 EXAM No. 2
 August 11, 1994

Answer Key:

Question One:

The partial pressure of Ar is 2.10 atm and the partial pressure of CO_{2} is 4.90 atm

Question Two:

a) The heat of combustion of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is $-2.801 \times 10^{3} \mathrm{kj} / \mathrm{mol}$ glucose.
b) ΔH for the reaction given is $-5.602 \times 10^{3} \mathrm{~kJ}$

Question Three:

a) ΔH^{0} for the reaction is -312 kJ
b) ΔH° for the reaction is $+1.01 \times 10^{3} \mathrm{~kJ}$.
i) The reaction is endothermic.
ii) Heat is absorbed during the course of this reaction?

Question Four:

a)
i) $\quad \mathrm{N}_{2} \mathrm{H}_{4} \quad=2$
ii) $\quad \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \quad \pm 2$
iii) $\quad \mathrm{Na}_{2} \mathrm{O}_{2} \quad-1$
iv) $\quad \mathrm{W}_{2} \mathrm{O}_{11}{ }^{2-}+10$
b) i) Oxidation Half Reaction:
$2 \mathrm{Cl}^{-}(\mathrm{aq})--->\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$
Reduction Half Reaction:
$14 \mathrm{H}^{+}(\mathrm{aq})++6 \mathrm{e}^{-}-->2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
ii) $14 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+6 \mathrm{Cl}^{-}(\mathrm{aq})--->3 \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
iii) The oxidizing agent is $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})$.

Question Five:

a) i)

$$
K_{c}=\frac{\left[\mathrm{N}_{2}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left.-----------\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{3}}
$$

$$
\text { ii) } \quad K_{c}=\begin{aligned}
& {[\mathrm{SO} 2]^{2}} \\
& ---\cdots---- \\
& {\left[\mathrm{O}_{2}\right]^{3}}
\end{aligned}
$$

b) $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
c) i) $K_{c}=90$.
ii) $K_{c}=0.11$
d) i)

ACTION TAKEN:	Mass of NH_{3}	$\mathrm{~K}_{\mathrm{c}}$
Some N_{2} is removed	D	NC
Some $\mathrm{H}_{2} \mathrm{O}$ is added	NC	NC
Volume of Container is increased	I	NC
Temperature is decreased	D	D

ii) The reactants.

Question Six:

a) the equilibrium concentration of $\mathrm{NO}(\mathrm{g})$ is $0.0318 M$ and $\mathrm{Br}_{2}(\mathrm{~g})$ is $0.0346 M$.
b) $\mathrm{K}_{\mathrm{c}}=107$

Question Seven:

The concentrations of $\mathrm{H}_{2} \mathrm{O}, \mathrm{Cl}_{2} \mathrm{O}$, and HOCl at equilibrium are $0.14 M, 0.14 M$ and $0.042 M$, respectively.

Question Eight:

a) i) $\mathrm{NH}_{4}{ }^{+}$
ii) HCO_{3}
b) i) NH_{2}
ii) O^{2-}
c) i) Stronger acid: $\mathrm{HSO}_{4}-$
iii) Weaker acid: HCN

d) | $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ | $\left[\mathrm{OH}^{-}\right]$ | pH | pOH |
| :---: | :---: | :---: | :---: |
| 3.3×10^{-4} | 3.0×10^{-11} | 3.78 | 10.52 |
| 2.7×10^{-9} | 3.7×10^{-6} | 8.57 | 5.43 |

Bonus:

$$
\mathrm{pH}=1.307
$$

