KWANTLEN UNIVERSITY COLLEGE
 CHEMISTRY 1110 S-10
 EXAM No. 1
 Thursday February 19, 1998

NAME: \qquad
Instructions: Ensure that this exam contains all Nine questions. Read the exam carefully and judge your time accordingly. ALL WORK MUST BE SHOWN TO RECEIVE ANY CREDIT ! If you need extra space, use the back of a preceeding page and clearly indicate the question number. Rough work may also be done on the back of a preceeding page. A periodic chart is supplied with this exam.
Maximum Score: 90 points

USEFUL INFORMATION:

Avogadro's Number: 6.0221×10^{23}
Gas Constant: $\mathbf{R}=0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}$
Ideal Gas Equation: $\mathbf{P V}=\mathbf{n R T}$

Question	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	
$\%$	
6	

Question One: (8 MARKS)

a) If $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ escapes from a cylinder (effuses) at a rate of 75 mL every 25 seconds, how long would it take for 1.00 L of $\mathrm{H}_{2}(\mathrm{~g})$ to escape from the cylinder under the same conditions of temperature and pressure? (3)
b) What is the resulting concentration, if 25.0 mL of $1.00 \mathrm{M} \mathrm{HNO}_{3}$ is mixed with 75.0 mL of 3.00 M HNO_{3}. (2)
c) Calculate the normality and molarity of a $\mathrm{Mg}(\mathrm{OH})_{2}$ solution, if 20.00 mL of this solution reacts completely with 10.00 mL of $0.01000 M \mathrm{H}_{3} \mathrm{PO}_{4}$. (3)

Question Two: (9 MARKS)

a) An unknown gas has a mass of 10.0 g and occupies 15.0 L at $27.0^{\circ} \mathrm{C}$ and a pressure of 0.500 atm . Determine the molar mass of this unknown gas. (3)
b) Automobile air bags are designed to inflate rapidly in a crash. The impact of the collision closes an electric circuit which initiates the following reaction between sodium azide and $\mathrm{Fe}_{2} \mathrm{O}_{3}$:

$$
6 \mathrm{NaN}_{3}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})--->3 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{~s})+9 \mathrm{~N}_{2}(\mathrm{~g})
$$

i) How many grams of sodium azide (in the presence of excess $\mathrm{Fe}_{2} \mathrm{O}_{3}$), would be required to inflate a 75.0 L air bag with nitrogen gas at $25.0^{\circ} \mathrm{C}$ and 748 mm Hg pressure? (Assume 100% yield) (4)
ii) This reaction was carried out using the mass of sodium azide calculated above. After the reaction had finished 35.5 g of $\mathrm{Fe}(\mathrm{s})$ was recovered. Determine the $\%$ yield for this reaction. (2)

Question Three: (6 MARKS)

A 10.0 g sample of a $\mathrm{Cu} / \mathrm{Ag}$ alloy reacted with concentrated HNO_{3} solution according to the following equations:

$$
\begin{aligned}
& \mathrm{Cu}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})--->\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{Ag}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})--->\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

If a total of 10.00 g of $\mathrm{NO}_{2}(\mathrm{~g})$ was recovered from the reaction determine the \% (by mass) of Ag in the alloy. (assume 100% yield) (6)

Question Four: (6 MARKS)

Provide complete structures (you may use condensed formulas like $\mathrm{CH}_{3} \mathrm{CH}_{3}$ to indicate H atoms) to illustrate each of the following: (No name necessary. Show all hydrogens)
a) a secondary amine
b) a ketone
c) a cyclic diene
d) an ortho substituted benzene

Question Four: (Continued)

e) an acid anhydride
f) an ether

Question Five: ($\mathbf{1 0}$ MARKS)

Draw the structures (showing all hydrogens) for each of the following organic molecules:
a) cis-3-methyl-2-pentene
b) 5-ethyl-6,6-dimethyl-2-octyne
c) 3-methylcyclopentanone
d) o - chlorophenol
e) methyl benzoate

Question Six: (10 MARKS)
Name each of the following molecules using systematic (IUPAC) or other acceptable names.
a)

c)

e)

Question Seven: (21 MARKS)

Draw the structure(s) for the organic reactants or products in each case.

b)

c)

d)

Question Seven: (Continued)
e)

f)

Question Eight: (8 MARKS)

In each case draw open chain (non-cyclic) structures to illustrate the following: (No name nesessary)
a) a pair of positional isomers having the formula $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Br}$.
b) a pair of functional isomers having the formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$.
c) a pair of geometric isomers having the formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}_{2}$.
d) a structure having the formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ containing one chiral carbon atom. Label this atom with an asterisk (*).

Question Nine: (12 MARKS)

There are three isomers for the methyl cyclopentanols with the formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$. (Note: We will count each cis-trans pair as only one isomer.)
a) Draw the structures for the three isomers. Be sure to show all hydrogens.
b) Based on the information given below, identify the above three isomers: \mathbf{A}, \mathbf{B}, and \mathbf{C}, as well as, the six products(I to VI). Provide structures for the products.
i) $\quad \mathrm{A}$
 no reaction
Δ

Conc. KMnO_{4}
B
Δ
a ketone (I)

Conc. KMnO_{4}
 C
 \qquad

 a ketone (II)Δ
ii) A $\begin{gathered}\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4} \\ ----------->\end{gathered} \quad$ alkenes (III) and (IV)

B | Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ |
| :---: |
| Δ |
| $\Delta--------->$ |\quad alkenes (IV) and (V)

Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C --------------> alkenes (V) and (VI)
Δ

