KWANTLEN UNIVERSITY COLLEGE CHEMISTRY 1110 S-10 EXAM No. 1 Thursday February 19, 1998

NAME: _____

Instructions: Ensure that this exam contains all **Nine** questions. Read the exam carefully and judge your time accordingly. **ALL WORK MUST BE SHOWN TO RECEIVE ANY CREDIT !** If you need extra space, use the back of a preceeding page and clearly indicate the question number. Rough work may also be done on the back of a preceeding page. A periodic chart is supplied with this exam. **Maximum Score: 90 points**

USEFUL INFORMATION:

Avogadro's Number: 6.0221 x 10²³

Gas Constant: R = 0.0821 L-atm/mol-K

1 atm = 760 mm Hg

Ideal Gas Equation: PV = nRT

Question	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	
%	

Question One: (8 MARKS)

a) If C₂H₄(g) escapes from a cylinder (effuses) at a rate of 75 mL every 25 seconds, how long would it take for 1.00 L of H₂(g) to escape from the cylinder under the same conditions of temperature and pressure? (3)

b) What is the resulting concentration, if 25.0 mL of 1.00 *M* HNO₃ is mixed with 75.0 mL of 3.00 *M* HNO₃. (2)

c) Calculate the normality and molarity of a $Mg(OH)_2$ solution, if 20.00 mL of this solution reacts completely with 10.00 mL of 0.01000 $M H_3PO_4$. (3)

Question Two: (9 MARKS)

a) An unknown gas has a mass of 10.0 g and occupies 15.0 L at 27.0 °C and a pressure of 0.500 atm. Determine the molar mass of this unknown gas. (3)

b) Automobile air bags are designed to inflate rapidly in a crash. The impact of the collision closes an electric circuit which initiates the following reaction between sodium azide and Fe_2O_3 :

 $6 \text{ NaN}_3(s) + \text{Fe}_2\text{O}_3(s) \implies 3 \text{ Na}_2\text{O}(s) + 2 \text{ Fe}(s) + 9 \text{ N}_2(g)$

i) How many grams of sodium azide (in the presence of excess Fe₂O₃), would be required to inflate a 75.0 L air bag with nitrogen gas at 25.0 °C and 748 mm Hg pressure? (Assume 100% yield) (4)

ii) This reaction was carried out using the mass of sodium azide calculated above. After the reaction had finished 35.5 g of Fe(s) was recovered. Determine the % yield for this reaction. (2)

Question Three: (6 MARKS)

A 10.0 g sample of a Cu/Ag alloy reacted with concentrated HNO_3 solution according to the following equations:

 $\begin{aligned} & \text{Cu(s)} + 4 \text{ H}^{+}(aq) + 2 \text{ NO}_{3}^{-}(aq) & \text{--->} \text{ Cu}^{2+}(aq) + 2 \text{ NO}_{2}(g) + 2 \text{ H}_{2}\text{O}(l) \\ & \text{Ag(s)} + 2 \text{ H}^{+}(aq) + \text{ NO}_{3}^{-}(aq) & \text{--->} \text{ Ag}^{+}(aq) + \text{ NO}_{2}(g) + \text{ H}_{2}\text{O}(l) \end{aligned}$

If a total of 10.00 g of $NO_2(g)$ was recovered from the reaction determine the % (by mass) of Ag in the alloy. (assume 100% yield) (6)

Question Four: (6 MARKS)

Provide complete structures (you may use condensed formulas like CH₃CH₃ to indicate H atoms) to illustrate each of the following: (No name necessary. **Show all hydrogens**)

a) a secondary amine

b) a ketone

c) a cyclic diene

d) an ortho substituted benzene

Question Four: (Continued)

e) an acid anhydride

f) an ether

Question Five: (10 MARKS)

Draw the structures (showing all hydrogens) for each of the following organic molecules:

a) *cis*-3-methyl-2-pentene

b) 5-ethyl-6,6-dimethyl-2-octyne

c) 3-methylcyclopentanone

d) *o* - chlorophenol

e) methyl benzoate

Question Six: (10 MARKS)

Name each of the following molecules using systematic (IUPAC) or other acceptable names.

Question Seven: (21 MARKS)

Draw the structure(s) for the organic reactants *or* products in each case.

Question Eight: (8 MARKS)

In each case draw open chain (non-cyclic) structures to illustrate the following: (No name nesessary)

a) a pair of positional isomers having the formula $C_6H_{11}Br$.

b) a pair of functional isomers having the formula $C_5H_{10}O$.

c) a pair of geometric isomers having the formula $C_3H_4Cl_2$.

d) a structure having the formula $C_5H_{12}O$ containing one chiral carbon atom. Label this atom with an asterisk (*).

Question Nine: (12 MARKS)

There are **three** isomers for the methyl cyclopentanols with the formula $C_6H_{12}O$. (Note: We will count each cis-trans pair as only one isomer.)

a) Draw the structures for the **three** isomers. Be sure to show all hydrogens.

b) Based on the information given below, identify the above **three** isomers: **A**, **B**, and **C**, as well as, the six products(I to VI). Provide structures for the products.

Question Nine: (Continued)

