KWANTLEN UNIVERSITY COLLEGE
CHEMISTRY 1210 S-10
EXAM No. 1A
October 16, 1997

NAME: \qquad

Instructions: This exam contains Seven questions. Read the exam carefully and judge your time accordingly. A periodic chart is given on the last page of this exam. Return this exam paper with your exam booklet. ALL CALCULATIONS MUST BE SHOWN TO RECIEVE ANY CREDIT ! Maximum Score: 61 points

USEFUL INFORMATION:

1 Faraday $=96,485$ Coulombs/mole e^{-}
$R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$
$\ln (X)=2.303 \log _{10}(X)$
Nernst equation at $25^{\circ} \mathrm{C}: \quad \mathscr{E}=\mathscr{E}^{\circ}-(0.05916 / \mathrm{n}) \log \mathrm{Q}$
Arrhenius equation: $k=A e^{-E a / R T}$
Temperature dependence of k :
$\ln \left(\mathrm{k}_{2} / \mathrm{k}_{1}\right)=\begin{array}{ccc}-\mathrm{E}_{\mathrm{a}} & 1 & 1 \\ ------ & --- \\ \mathrm{R} & \mathrm{T}_{2} & \mathrm{~T}_{1}\end{array}=\begin{gathered}\mathrm{E}_{\mathrm{a}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \\ --------- \\ \mathrm{R} \mathrm{T}_{1} \mathrm{~T}_{2}\end{gathered}$

Integrated Rate Laws:

Zero Order:

$$
\left[\mathbf{A}_{\mathbf{0}}\right]-\left[\mathbf{A}_{\mathrm{t}}\right]=\mathbf{k t}
$$

First Order:

$$
\ln \left[A_{0}\right]-\ln \left[A_{t}\right]=k t
$$

Second Order:

$$
\left[1 / \mathbf{A}_{t}\right]-\left[1 / \mathbf{A}_{0}\right]=k t
$$

Question One: (8 MARKS)
For the following oxidation-reduction reaction which takes place in basic solution.

$$
\mathrm{CrO}_{4}^{2-}(\mathrm{aq})+\mathrm{HSnO}_{2}^{-}(\mathrm{aq})--->\mathrm{HSnO}_{3}^{-}(\mathrm{aq})+\mathrm{CrO}_{2}^{-}(\mathrm{aq})
$$

a) Balance the above chemical equation. (5)
b) Which Species is the reducing agent?(1)
c) What is the equivalent weight of $\mathrm{K}_{2} \mathrm{CrO}_{4}($ molar mass $=194.20)$ used in the above reaction for $\mathrm{CrO}_{4}{ }^{2-}$? (2)

Question Two: (6 MARKS)

A mixture of NaCl and NaNO_{2} was to be used in processing meat to make sausage. Before being used it was analyzed as follows: A 1.124 g portion of the mixture was dissolved in water and acidified converting NO_{2}^{-}to HNO_{2}. The HNO_{2} that was formed was titrated with $0.2000 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, which oxidized HNO_{2} to $\mathrm{NO}_{3}{ }^{-}$. The titration required 21.47 mL of the $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution.
a) How many equivalents of HNO_{2} reacted in the titration? (2)
b) How many moles of NaNO_{2} were in the 1.124 g sample? (2)
c) What was the percentage of NaNO_{2} in the sample? (2)
(Note: Na^{+}and Cl^{-}do not react in this titration. You do not need to write the complete balanced chemical equation.)

Question Three: (14 MARKS)

An electrochemical cell is constructed in which a platinum wire dips into a solution containing 2.00 M Fe^{3+} and $1.00 \mathrm{M} \mathrm{Fe}^{2+}$, the other half-cell consists of copper metal immersed in a $1.00 \mathrm{M} \mathrm{Cu}^{2+}$ solution. The two half-cells are connected by a salt bridge and the temperature is maintained at $25.0^{\circ} \mathrm{C}$. Given the following reduction potentials:

$$
\begin{array}{ll}
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Cu}(\mathrm{~s}) & \mathscr{E}^{\circ}=+0.34 \mathrm{~V} \\
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftarrows \mathrm{Fe}^{2+}(\mathrm{aq}) & \mathscr{E}^{\circ}=+0.77 \mathrm{~V}
\end{array}
$$

a) Write the overall cell reaction and calculate $\mathscr{E}_{\text {cell }}$. (4)
b) Write the conventional cell notation for this electrochemical cell operating under the above conditions. (2)
c) Write the half reaction which takes place at the anode. (1)
d) What is the sign at the cathode? (1)

Question Three: (Continued)

e) Determine the equilibrium constant for the cell reaction. (3)
f) The copper electrode is placed in a solution of an unknown $\left[\mathrm{Cu}^{2+}\right]$. The measured potential at 298 K is +0.54 V . What is the $\left[\mathrm{Cu}^{2+}\right]$? (3)

Question Four: (8 MARKS)

The total charge of electricity required to plate out 15.54 g of a metal, $\mathrm{M}(\mathrm{s})$, from a solution of M^{2+} ions is 14475 coulombs.
a) Determine the identity of the unknown metal. (3)
b) Write the half reaction for the plating out of this metal. (1)
c) At which electrode does the plating out of this metal take place and what is the sign of this electrode? (2)
d) If the current used in this electrolysis was 2.00 amperes, how long did it take to plate out the 15.54 g of this metal? (2)

Question Five: (9 MARKS)

a) The thermal decomposition of phosphine $\left(\mathrm{PH}_{3}\right)$ into phosphrous and hydrogen gas is a first-order reaction. The observed half-life of this reaction is 35.0 s at $680^{\circ} \mathrm{C}$.
i) Determine the rate constant for this reaction. (3)
ii) How long would it take for for 95.0 percent of the phosphine to decompose at this temperature? (3)
b) A catalyst speeds up a reaction by proceeding by a different pathway having a lower activation energy. If a reaction with a catalyst proceeds 10^{4} times faster than without a catalyst, by how many $\mathrm{kJ} / \mathrm{mol}$ is the activation energy lowered, if both reactions occur at $26.9^{\circ} \mathrm{C}$? (Note: assume that "A" does not change.) (3)

Question Six: (10 MARKS)

The reaction between mercury(II) chloride and oxalate ions in aqueous solution is given by the equation,

$$
2 \mathrm{HgCl}_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})--->2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})
$$

The table below gives the results of four experiments carried out at a constant temperature.

Experiment \#	$\left[\mathrm{HgCl}_{2}\right]$ (M)	$\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$ (M)	$-\mathrm{d}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right] / \mathrm{dt}$ $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{S})$
1	0.105	0.15	1.8×10^{-5}
2	0.105	0.30	7.1×10^{-5}
3	0.052	0.30	3.5×10^{-5}
4	0.052	0.15	8.9×10^{-6}

a) Determine the rate law for this reaction. (4)
b) Determine the numerical value of the rate constant and its units. (2)
c) Calculate the rate of appearence of $\mathrm{Cl}^{-}(\mathrm{aq})$ in experiment \#3. (2)
d) What is the reaction rate when the concentration of HgCl_{2} is 0.080 M and that of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is 0.10 M at the same temperature as the above experiments. (2)

Question Seven: (6 MARKS)

The gas phase reaction for the decomposition of ozone is given by the equation:

$$
2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g})
$$

A proposed mechanism for this reaction is given as,

$$
\begin{array}{ll}
& \stackrel{\mathrm{k}_{1}}{\rightleftharpoons} \\
\mathrm{O}_{3} & \mathrm{O}_{2}+\mathrm{O} \quad \text { (both fast with equal rates) } \\
\mathrm{k}_{2}
\end{array} \mathrm{O}_{3}+\mathrm{O} \quad \stackrel{\mathrm{k}_{3}}{--->2 \mathrm{O}_{2} \quad \text { (slow). }}
$$

Determine the rate law based on this proposed mechanism.

