KWANTLEN UNIVERSITY COLLEGE CHEMISTRY 1210 S-10 EXAM No. 1A October 16, 1997

NAME:_____

Instructions: This exam contains **Seven** questions. Read the exam carefully and judge your time accordingly. A periodic chart is given on the last page of this exam. Return this exam paper with your exam booklet. **ALL CALCULATIONS MUST BE SHOWN TO RECIEVE ANY CREDIT !** Maximum Score: **61** points

USEFUL INFORMATION:

1 Faraday = 96,485 Coulombs/mole e⁻

R = 8.314 J/mol·K = 0.08206 L-atm/mol-K

 $ln(X) = 2.303 log_{10}(X)$

<u>Nernst equation at 25 °C</u>: $\mathcal{E} = \mathcal{E}^{\circ} - (0.05916 / n) \log Q$

Arrhenius equation: $k = Ae^{-Ea/RT}$

Temperature dependence of k:

 $ln(k_2 / k_1) = \begin{array}{cccc} -E_a & 1 & 1 & E_a (T_2 - T_1) \\ ---- & --- & --- & = \\ R & T_2 & T_1 & R T_1 T_2 \end{array}$

Integrated Rate Laws:

Zero Order:

 $[\mathbf{A}_{o}] - [\mathbf{A}_{t}] = \mathbf{k}\mathbf{t}$

First Order:

 $\ln[A_0] - \ln[A_t] = kt$

Second Order:

 $[1/A_t] - [1/A_o] = kt$

Question One: (8 MARKS)

For the following oxidation-reduction reaction which takes place in **basic** solution.

 $\operatorname{CrO}_{4}^{2}(\operatorname{aq}) + \operatorname{HSnO}_{2}(\operatorname{aq}) - - > \operatorname{HSnO}_{3}(\operatorname{aq}) + \operatorname{CrO}_{2}(\operatorname{aq})$

- a) Balance the above chemical equation. (5)
- b) Which Species is the reducing agent? (1)
- c) What is the equivalent weight of $K_2 CrO_4$ (molar mass = 194.20) used in the above reaction for CrO_4^{2-2} ? (2)

Question Two: (6 MARKS)

A mixture of NaCl and NaNO₂ was to be used in processing meat to make sausage. Before being used it was analyzed as follows: A 1.124 g portion of the mixture was dissolved in water and acidified converting NO₂⁻ to HNO₂. The HNO₂ that was formed was titrated with 0.2000 N K₂Cr₂O₇, which oxidized HNO₂ to NO₃⁻. The titration required 21.47 mL of the K₂Cr₂O₇ solution.

- a) How many equivalents of HNO_2 reacted in the titration? (2)
- **b)** How many moles of NaNO₂ were in the 1.124 g sample? (2)
- c) What was the percentage of $NaNO_2$ in the sample? (2)

(Note: Na⁺ and Cl⁻ do not react in this titration. You do not need to write the complete balanced chemical equation.)

Question Three: (14 MARKS)

An electrochemical cell is constructed in which a platinum wire dips into a solution containing 2.00 M Fe³⁺ and 1.00 M Fe²⁺, the other half-cell consists of copper metal immersed in a 1.00 M Cu²⁺ solution. The two half-cells are connected by a salt bridge and the temperature is maintained at 25.0 °C. Given the following reduction potentials:

$$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Cu}(s) \qquad \qquad \mathscr{E}^{\circ} = +0.34 \mathrm{V}$$

 $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq) \qquad \qquad \mathscr{E}^{\circ} = +0.77V$

- a) Write the overall cell reaction and calculate \mathscr{E}_{cell} . (4)
- b) Write the conventional cell notation for this electrochemical cell operating under the above conditions. (2)
- c) Write the half reaction which takes place at the anode. (1)
- d) What is the sign at the cathode? (1)

Question Three: (Continued)

- e) Determine the equilibrium constant for the cell reaction. (3)
- f) The copper electrode is placed in a solution of an unknown [Cu²⁺]. The measured potential at 298K is +0.54V. What is the [Cu²⁺]? (3)

Question Four: (8 MARKS)

The total charge of electricity required to plate out 15.54g of a metal, M(s), from a solution of M^{2+} ions is 14475 coulombs.

- a) Determine the identity of the unknown metal. (3)
- b) Write the half reaction for the plating out of this metal. (1)
- c) At which electrode does the plating out of this metal take place and what is the sign of this electrode?
 (2)
- d) If the current used in this electrolysis was 2.00 amperes, how long did it take to plate out the 15.54g of this metal? (2)

Question Five: (9 MARKS)

- a) The thermal decomposition of phosphine (PH_3) into phosphrous and hydrogen gas is a first-order reaction. The observed half-life of this reaction is 35.0s at 680 °C.
 - i) Determine the rate constant for this reaction. (3)
 - ii) How long would it take for for 95.0 percent of the phosphine to decompose at this temperature? (3)
- b) A catalyst speeds up a reaction by proceeding by a different pathway having a lower activation energy. If a reaction with a catalyst proceeds 10⁴ times faster than without a catalyst, by how many kJ/mol is the activation energy lowered, if both reactions occur at 26.9 °C? (Note: assume that "A" does not change.) (3)

Question Six: (10 MARKS)

The reaction between mercury(II) chloride and oxalate ions in aqueous solution is given by the equation,

$$2HgCl_2(aq) + C_2O_4^{2-}(aq) ---> 2Cl^{-}(aq) + 2CO_2(g) + Hg_2Cl_2(s)$$

The table below gives the results of four experiments carried out at a constant temperature.

Experiment #	[HgCl ₂]	$[C_2 O_4^{2-}]$	$- d[C_2O_4^{2}]/dt$
	(M)	(M)	$(mol/L \cdot S)$
1	0.105	0.15	1.8 x 10 ⁻⁵
2	0.105	0.30	7.1 x 10 ⁻⁵
3	0.052	0.30	3.5 x 10 ⁻⁵
4	0.052	0.15	8.9 x 10 ⁻⁶

a) Determine the rate law for this reaction. (4)

- b) Determine the numerical value of the rate constant and its units. (2)
- c) Calculate the rate of appearence of Cl⁻(aq) in experiment #3. (2)
- **d**) What is the reaction rate when the concentration of $HgCl_2$ is 0.080 M and that of $C_2O_4^{2-}$ is 0.10 M at the same temperature as the above experiments. (2)

Question Seven: (6 MARKS)

The gas phase reaction for the decomposition of ozone is given by the equation:

$$2O_3(g) \rightleftharpoons 3O_2(g)$$

A proposed mechanism for this reaction is given as,

Determine the rate law based on this proposed mechanism.