KWANTLEN UNIVERSITY COLLEGE
 CHEMISTRY 1210 S-10
 EXAM No. 2A
 November 20, 1997

NAME:

\qquad
Instructions: This exam contains Five questions. Read the exam carefully and judge your time accordingly. A thermodynamic data sheet and periodic chart are included with this exam. Return this exam paper with your exam booklet. ALL CALCULATIONS MUST BE SHOWN TO RECEIVE ANY CREDIT! Maximum Score: $62+4$ bonus points.

Question One: (6 MARKS)
a) The following reaction takes place in liquid ammonia as the solvent:
$\mathrm{H}^{-}+\mathrm{NH}_{3}--->\mathrm{NH}_{2}^{-}+\mathrm{H}_{2}$
In this reaction ammonia acts as
i) a Brønsted-Lowry base
ii) an Arrhenius acid
iii) a Lewis base
iv) a Brønsted-Lowry acid
v) an Arrhenius base
vi) a conjugate base
b) Choose the couple which is not a conjugate acid-base pair,
i) $\mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$
ii) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{2} \mathrm{O}$
iii) $\mathrm{OH}^{-}, \mathrm{O}^{2-}$
iv) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HPO}_{4}{ }^{2-}$
v) $\mathrm{NH}_{2} \mathrm{OH}_{2}{ }^{+}, \mathrm{NH}_{2} \mathrm{OH}$
c) What is the pH of a 0.10 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$?
i) 13.00
ii) 13.30
iii) 0.20
iv) 0.10
v) none of these
d) What is the pH of the solution when 10.00 mL of $0.30 \mathrm{M} \mathrm{HNO}_{3}$ is mixed with 10.00 mL of 0.10 M KOH ?
i) 7.0
ii) 13.0
iii) 0.82
iv) 1.0
v) 0.70
e) Which of the following aqueous mixtures is not a buffer solution?
i) $\mathrm{NH}_{4} \mathrm{Cl}$ and NH_{3}
ii) HCN and NaCN
iii) $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
iv) $\mathrm{CH}_{3} \mathrm{COONa}$ and NaClv) $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$

Question Two: (15 MARKS)
Dinitrogen pentoxide, $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})$, decomposes at $25.0^{\circ} \mathrm{C}$ according to the equation,

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.0 \times 10^{5} \quad \text { and } \Delta H_{298}{ }^{\mathrm{o}}=+109.55 \mathrm{~kJ}
$$

a) Calculate K_{c} at 298 K for this reaction.
b) Calculate K_{p} for the above equilibrium at 398 K .
c) Find the equilibrium pressure of $\mathrm{NO}_{2}(\mathrm{~g})$ at 298 K when the equilibrium pressure of $\mathrm{O}_{2}(\mathrm{~g})$ is 2.00 atm. (3)
d) What happens (increase, decrease, or no change) to the mass of $\mathrm{NO}_{2}(\mathrm{~g})$ and the value of K_{p} when,(4)
i) $\quad \mathrm{O}_{2}(\mathrm{~g})$ is added to the flask.
ii) some $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})$ is added (assume volume does not change).
iii) volume is increased.
iv) temperature is decreased.
e) Determine the value of K_{p} for the following equilibrium: (2)

$$
4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~s}) \quad \mathrm{K}_{\mathrm{p}}=?
$$

f) If excess solid $\mathrm{N}_{2} \mathrm{O}_{5}$ was injected into an evacuated 1.00 L reaction vessel at $25.0{ }^{\circ} \mathrm{C}$, what would be the total pressure of this system at equilibrium?

BONUS QUESTION (4 MARKS)

Question Three: (18 MARKS)

The combustion reaction for methane gas is given by the following thermochemical equation at $25.0^{\circ} \mathrm{C}$:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})--->\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H^{\mathrm{o}}=-889.7 \mathrm{~kJ}$
a) Determine the standard enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ using the enthalpy of combustion and the following standard enthalpies of formation at 298 K :
$\Delta H_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{CH}_{4}(\mathrm{~g})\right)=-74.8 \mathrm{~kJ} / \mathrm{mol} \quad \Delta H_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=-393.5 \mathrm{~kJ} / \mathrm{mol}$
b) Calculate the work done if the above reaction was carried out at constant pressure (1.00 atm) at $25^{\circ} \mathrm{C}$.
c) Calculate the change in internal energy, ΔE°, at $25^{\circ} \mathrm{C}$ for the above reaction. (2)

Question Three: (Continued)

d) What size sample of $\mathrm{CH}_{4}(\mathrm{~g})($ Molar mass $=16.0 \mathrm{~g} / \mathrm{mol})$ would have to be burned in a bomb calorimeter to cause a temperature rise of $5.00{ }^{\circ} \mathrm{C}$? The total heat capacity of the calorimeter (including the water) was found to be $8.000 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. (4)
e) Calculate the approximate enthalpy of combustion for $\mathrm{CH}_{4}(\mathrm{~g})$ using the bond energies given below: (3)
$\mathrm{C}-\mathrm{H}(413 \mathrm{~kJ} / \mathrm{mol}) ; \mathrm{C}=\mathrm{O}(802 \mathrm{~kJ} / \mathrm{mol}) ; \mathrm{O}=\mathrm{O}(498 \mathrm{~kJ} / \mathrm{mol}) ; \mathrm{O}-\mathrm{H}(463 \mathrm{~kJ} / \mathrm{mol})$
f) Give two reasons why the value of ΔH° calculated in part e) so different than the heat of combustion given above?
g) Calculate ΔS^{0} for the combustion of methane given the absolute molar entropies:
$S^{0}\left(\mathrm{CH}_{4}(\mathrm{~g})\right)=186.26 \mathrm{~J} / \mathrm{mol}-\mathrm{K} \quad S^{0}\left(\mathrm{O}_{2}(\mathrm{~g})\right)=205.14 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ $S^{0}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=213.74 \mathrm{~J} / \mathrm{mol}-\mathrm{K} \quad S^{0}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=69.91 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
h) Briefly comment on the sign and magnitude of ΔS° calculated in part \mathbf{g}) above in terms of the reaction. (1)

Question Four: (17 MARKS)
Methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ is a weak base which undergoes hydrolysis as follows:

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{K}_{\mathrm{b}}=4.4 \times 10^{-4}
$$

A 20.00 mL sample of 0.2000 M methylamine is titrated with 0.1000 M HCl solution.
a) Calculate the pH of the methylamine solution before any HCl is added.
b) Calculate the pH after the addition of 10.00 mL of the HCl solution. (3)
c) Calculate the pH at the equivalence point.
d) Calculate the pH after the addition of 50.00 mL of HCl solution. (3)
e) Which indicator methyl red $\left(\mathrm{pK}_{\text {ind }} \approx 5.0\right)$ or thymol blue (pK ind ≈ 9.0) would be most suitable for this titration? (Assume color change occurs when $\mathrm{pH}=\mathrm{pK}_{\text {ind }}$.) EXPLAIN (1)
f) Roughly sketch a titration curve (not necessarily to scale) for this titration, clearly show the following: (4)
i) units on both x and y axis and all points calculated above.
ii) equivalence point
iii) buffer region(s)
iv) regions or point(s) where pH is dependent only upon:

1) $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]$
2) $\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]$
3) $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right] /\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]$
4) $\left[\mathrm{H}^{+}\right]$
a) A solution contains $1.00 \times 10^{-4} \mathrm{M} \mathrm{Cu}^{+}$and $2.00 \times 10^{-2} \mathrm{M} \mathrm{Pb}^{2+}$. If a source of I^{-}is added to this solution will $\mathrm{PbI}_{2}\left(\mathrm{~K}_{\text {sp }}=8.49 \times 10^{-9}\right)$ or $\mathrm{CuI}\left(\mathrm{K}_{\text {sp }}=1.27 \times 10^{-12}\right)$ precipitate first? Specify the concentration of I^{-}necessary to begin precipitation of each compound.
b) Calculate the $\%$ left in solution of the first ion to precipitate when the second ion just starts to precipitate.
