KWANTLEN UNIVERSITY COLLEGE CHEMISTRY 1210 S-10 EXAM No. 2A November 20, 1997

NAME:

Instructions: This exam contains **Five** questions. Read the exam carefully and judge your time accordingly. A thermodynamic data sheet and periodic chart are included with this exam. **Return** this exam paper with your exam booklet. **ALL CALCULATIONS MUST BE SHOWN TO RECEIVE ANY CREDIT** ! Maximum Score: **62** + **4 bonus** points.

Question One: (6 MARKS)

a) The following reaction takes place in liquid ammonia as the solvent:

 H^- + NH_3 ---> NH_2^- + H_2

In this reaction ammonia acts as

i) a Brønsted-Lowry base	ii) an Arrhenius acid	iii) a Lewis base

- iv) a Brønsted-Lowry acid v) an Arrhenius base vi) a conjugate base
- b) Choose the couple which is not a conjugate acid-base pair,

i) HCO₃⁻, CO₃²⁻ ii) H₃O⁺, H₂O iii) OH⁻, O²⁻ iv) H₃PO₄, HPO₄²⁻ v) NH₂OH₂⁺, NH₂OH

c) What is the pH of a 0.10 M solution of Ba(OH)₂?

i) 13.00 ii) 13.30 iii) 0.20 iv) 0.10 v) none of these

d) What is the pH of the solution when 10.00 mL of 0.30 *M* HNO₃ is mixed with 10.00 mL of 0.10 *M* KOH?

i) 7.0 ii) 13.0 iii) 0.82 iv) 1.0 v) 0.70

- e) Which of the following aqueous mixtures is **not** a buffer solution?
 - i) NH₄Cl and NH₃ ii) HCN and NaCN iii) H₃PO₄ and NaH₂PO₄

iv) CH₃COONa and NaClv) Na₂HPO₄ and NaH₂PO₄

Question Two: (15 MARKS)

Dinitrogen pentoxide, N₂O₅(s), decomposes at 25.0°C according to the equation,

 $N_2O_5(s) \iff 2 NO_2(g) + \frac{1}{2}O_2(g)$ $K_p = 2.0 \times 10^5$ and $\Delta H_{298}^{0} = +109.55 \text{ kJ}$

- a) Calculate K_c at 298K for this reaction. (2)
- **b)** Calculate K_p for the above equilibrium at 398K. (4)
- c) Find the equilibrium pressure of NO₂(g) at 298K when the equilibrium pressure of O₂(g) is 2.00 atm. (3)
- d) What happens (increase, decrease, or no change) to the mass of NO₂(g) and the value of K_p when,(4)
 - i) $O_2(g)$ is added to the flask.
 - ii) some $N_2O_5(s)$ is added (assume volume does not change).
 - iii) volume is increased.
 - iv) temperature is decreased.
- e) Determine the value of K_p for the following equilibrium: (2)

 $4 \text{ NO}_2(g) + O_2(g) \iff 2 \text{ N}_2O_5(s) \quad K_p = ?$

f) If excess solid N₂O₅ was injected into an evacuated 1.00L reaction vessel at 25.0 °C, what would be the total pressure of this system at equilibrium?
BONUS QUESTION (4 MARKS)

Question Three: (18 MARKS)

The combustion reaction for methane gas is given by the following thermochemical equation at 25.0 °C:

$$CH_4(g) + 2 O_2(g) ---> CO_2(g) + 2 H_2O(l)$$
 $\Delta H^{\circ} = -889.7 \text{ kJ}$

a) Determine the standard enthalpy of formation of $H_2O(l)$ using the enthalpy of combustion and the following standard enthalpies of formation at 298K: (3)

 $\Delta H_{\rm f}^{\rm o}({\rm CH}_4({\rm g})) = -74.8 \text{ kJ/mol}$ $\Delta H_{\rm f}^{\rm o}({\rm CO}_2({\rm g})) = -393.5 \text{ kJ/mol}$

- b) Calculate the work done if the above reaction was carried out at constant pressure (1.00 atm) at 25°C. (2)
- c) Calculate the change in internal energy, ΔE° , at 25°C for the above reaction. (2)

Question Three: (Continued)

- d) What size sample of $CH_4(g)$ (Molar mass = 16.0 g/mol) would have to be burned in a bomb calorimeter to cause a temperature rise of 5.00 °C? The total heat capacity of the calorimeter (including the water) was found to be 8.000 kJ/°C. (4)
- e) Calculate the approximate enthalpy of combustion for CH₄(g) using the bond energies given below: (3)

C-H(413 kJ/mol); C=O(802 kJ/mol); O=O(498 kJ/mol); O-H(463 kJ/mol)

- f) Give two reasons why the value of ΔH° calculated in part e) so different than the heat of combustion given above? (1)
- g) Calculate ΔS° for the combustion of methane given the absolute molar entropies: (2)

 $S^{\circ}(CH_4(g)) = 186.26 \text{ J/mol-K}$ $S^{\circ}(CO_2(g)) = 213.74 \text{ J/mol-K}$ $S^{\circ}(H_2O(l)) = 69.91 \text{ J/mol-K}$

h) Briefly comment on the sign and magnitude of ΔS° calculated in part g) above in terms of the reaction. (1)

Question Four: (17 MARKS)

Methylamine (CH₃NH₂) is a weak base which undergoes hydrolysis as follows:

 $CH_3NH_2(aq) + H_2O(1) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)K_b = 4.4 \times 10^{-4}$

A 20.00 mL sample of 0.2000 M methylamine is titrated with 0.1000 M HCl solution.

- a) Calculate the pH of the methylamine solution before any HCl is added. (3)
- b) Calculate the pH after the addition of 10.00 mL of the HCl solution. (3)
- c) Calculate the pH at the equivalence point. (3)
- d) Calculate the pH after the addition of 50.00 mL of HCl solution. (3)
- e) Which indicator methyl red ($pK_{ind} \approx 5.0$) or thymol blue ($pK_{ind} \approx 9.0$) would be most suitable for this titration? (Assume color change occurs when $pH = pK_{ind}$.) **EXPLAIN** (1)
- f) Roughly sketch a titration curve (not necessarily to scale) for this titration, clearly show the following: (4)
 - i) units on both x and y axis and **all points calculated above**.
 - ii) equivalence point
 - iii) buffer region(s)
 - iv) regions or point(s) where pH is dependent only upon:
 - 1) [CH₃NH₂] 2) [CH₃NH₃⁺]
 - 3) $[CH_3NH_2] / [CH_3NH_3^+]$ 4) $[H^+]$

Question Five: (6 MARKS)

- a) A solution contains $1.00 \times 10^{-4} \text{ M Cu}^+$ and $2.00 \times 10^{-2} \text{ M Pb}^{2+}$. If a source of I⁻ is added to this solution will PbI₂ (K_{sp} = 8.49 x 10⁻⁹) or CuI (K_{sp} = 1.27 x 10⁻¹²) precipitate first? Specify the concentration of I⁻ necessary to begin precipitation of each compound.
- **b)** Calculate the % left in solution of the first ion to precipitate when the second ion just starts to precipitate.