CHEM 1210
Quiz 1
January $23^{\text {rd }}, 2014$
Name: \qquad

1) For the following balanced oxidation-reduction reaction:
$35 \mathrm{H}_{2} \mathrm{O}+17 \mathrm{M}_{2} \mathrm{O}_{3}+2 \mathrm{X}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-} \rightarrow 2 \mathrm{O}_{2}+2 \mathrm{X}^{3+}+12 \mathrm{NO}_{3}{ }^{1-}+34 \mathrm{M}^{2+}+70 \mathrm{OH}^{1-}$
a) Identify the oxidizing agent:
b) How many electrons are transferred in the overall reaction?
c) If the molar mass of $\mathrm{M}_{2} \mathrm{O}_{3}$ is Z , what is the equivalent mass (in terms of Z)
2) Choose the correct statement about a container in which the following equilibrium in established:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-198 \mathrm{~kJ}
$$

A - a decrease in amount of O_{2} will decrease the amount of SO_{2} present
B - a decrease in volume will decrease the amount of SO_{2} present
C - a decrease in temperature will increase the amount of SO_{2} present
D - a decrease in the amount of SO_{3} present will increase the amount of SO_{2} present
E - an increase in the amount of O_{2} will increase the amount of SO_{2} present
3) Consider the following equilibrium reaction: $\quad 2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \leftrightarrow 2 \mathrm{C}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=20$ Determine K_{c} at the same temperature for the equilibrium:

$$
3 \mathrm{C}(\mathrm{~g}) \leftrightarrow 3 \mathrm{~A}(\mathrm{~g})+1.5 \mathrm{~B}(\mathrm{~g})
$$

A -30
B -0.075
C-0.050
D-0.033
E-0.011
4) Consider the reaction: $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$, a sample of pure NO_{2} is placed in a sealed container and allowed to reach equilibrium. The partial pressure of O_{2} at equilibrium is found to be 0.3500 atm and the total pressure to be 1.0866 atm . Determine K_{p} for the reaction.

A -2.86
B-66.9
C-128
D - 182
E - none of these

