1) A 25.0 mL sample of the weak base trimethylamine, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$, requires 50.0 mL of 0.200 M HCl to reach equivalence. The pK_{b} of trimethylamine is 4.20 , and the titration was carried out at $25^{\circ} \mathrm{C}$.
a) Calculate the pH of the solution at the start of the titration. [10.75]
b) Calculate the pH of the solution when 15.0 mL of the acid solution have been added. [10.17]
c) Calculate the pH at the equivalence point of this titration. [5.34]
d) Calculate the pH when 10.0 mL beyond the equivalence point have been added. [1.63]
e) If you were to select an indicator for the above titration, approximately what should be its pK_{a} ? EXPLAIN YOUR ANSWER. [choose an indicator with a $\mathbf{p K} \mathbf{a}_{\mathrm{a}}=\mathbf{p H}$ at equivalence]
2) A 10.00 mL sample of 0.3000 M weak acid (HA) is titrated with 0.1000 M NaOH solution. The K_{a} for $\mathrm{HA}=2.0 \times 10^{-4}$, and the titration was carried out at $25^{\circ} \mathrm{C}$.
a) Calculate the pH of the solution when no base has been added. [2.11]
b) Calculate how many mL of NaOH solution have been added when the $\mathrm{pH}=3.20$. [7.22 mL]
c) Calculate the pH when a total of 30.00 mL of NaOH solution have been added. [8.29]
d) Calculate the pH when a total of 40.00 mL of NaOH solution have been added. [12.30]
e) The indicators bromcresol green and thymol blue go through a color change from yellow to blue, however their $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ are different.
The pK_{a} (bromcresol green) $=4.5$ and the pK_{a} (thymol blue) $=8.5$
Which indicator should be used in the above titration so that the end point corresponds with the equivalence point? EXPLAIN YOUR ANSWER. [choose an indicator with a $\mathrm{pK}_{\mathrm{a}}=\mathrm{pH}$ at equivalence]
